
Trees 1

Trees and Codes

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

Trees 2

Binary Trees and Prefix Codes

Imagine that you have an alphabet of
symbols
n e.g. A, B, …, Z, a, b, …, z, ‘ ’, ‘.’

We wish to represent a string of these
symbols as a string of bits
n e.g. “This is a string of characters”

becomes “01100111000101010111001”

Trees 3

Method 1: Use a fixed number
for each symbol

Map A -> 1, B -> 2, …
“This is a string of characters” becomes a
string of numbers
n “20,34,35,…”

I required commas to separate the
characters!
n Use a fixed width, padded with leading 0’s instead
n “020034035…”

Trees 4

Method 1: Fixed width

How wide to my characters need to be
n Using a string of bits
n How many bits are needed to represent the

largest character?

ceil(log2(n)) bits
Use that many bits for each character
This is the system used within the computer
with 8 bits for each ASCII code

Trees 5

Method II: Prefix codes
For each symbol, we’ll use a code with
a special property
n No code is the prefix of any other code
How does this work?
Decoding:
n We read in the codes one bit at a time
n When we have a code we recognise, it

must be the end of a symbol
w It cannot be part of a longer symbol because

no code is the prefix of another code

Trees 6

Method II: Prefix codes

Example
n A:00, B:010, C:011, D:10, E:11

ADBECABADE
00100101101100010001011

 A D B E C A B A D E

The string decodes

Trees 7

Making a Prefix Code
We want the code to be efficient
n No strings longer than necessary
n No wasted strings

A code is a set of strings of binary digits, such
that no string corresponding to one symbol is
the prefix of a string corresponding to
another symbol
In a tree, leaf nodes have no children
n No path from the root to a leaf is the prefix of a

path from the root to another node

Trees 8

Binary Trees and Prefix Codes

Binary trees are in one to one
correspondence with Prefix Codes
n A:00, B:010, C:011, D:10, E:11

A

B C

D E

0

0

0

0

1

11

1

Trees 9

Prefix Trees

Binary Trees
n The left child corresponds to 0, the right to

1

Each leaf contains a symbol
The code for a symbol corresponds to
the path from the root to the leaf
containing that symbol

Trees 10

Encoding and Decoding

Imagine the encoder and decoder running in parallel

Encoding
n Start from the root
n While you are not at the symbol’s leaf
w If the symbol you wish to send is a left decendant, send

0 and move to your left child, else send 1 and move to
your right child

Decoding
n Start from the root
n While you are not at a leaf
w Read a bit. If it is 0 then move to your left chile, else

move to your right child

Trees 11

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:ACD Decoding:

Trees 12

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:ACD Decoding:

0

Trees 13

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:ACD Decoding:

Trees 14

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:ACD Decoding:

0

Trees 15

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

Trees 16

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

Trees 17

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

0

Trees 18

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

Trees 19

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

1

Trees 20

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

Trees 21

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

1

Trees 22

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:D Decoding:AC

Trees 23

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:D Decoding:AC

Trees 24

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:D Decoding:AC

1

Trees 25

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:D Decoding:AC

Trees 26

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:D Decoding:AC

1

Trees 27

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding: Decoding:ACD

Trees 28

Back to Method I: Balanced Tree

Method I was to used fixed length code
words
Each path from the root to a leaf is the
same length: a balanced tree
Balanced trees are good for worst case
path length. Are they good for coding?
n Yes, if you assume the worst case
n But we can normally do better…

Trees 29

Statically optimal codes

Want common symbols to have short
codes
This will make uncommon symbols have
longer codes
n In a tree with a fixed number of

leave/symbols, moving one leaf/symbol
closer to the root will move others further
away

Trees 30

Huffman codes

From Shannon’s information theory,
The optimal static code assigns -log2(p)
bits to a symbol that occurs with
probability p
It is possible to make a Huffman code
tree with this property
n Will look at this later in the course

Trees 31

Adaptive Codes

As long as the same change is made in
both sending and receiving trees/codes,
there is no reason why the tree/code
must remain static
n Send a character using the initial tree
n Update the tree using that character
w Can also be updated in the receiver as it

already has the character

n Send the next character

Trees 32

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:ACD Decoding:

Trees 33

Encoding and Decoding: ACD

A

B C

D E A

B C

D E

Encoding:CD Decoding:A

00

Trees 34

Encoding and Decoding: ACD

Encoding:CD Decoding:A

A

B C D E

A

B C D E

Make same change in both trees:
Rotate A’s parent

Trees 35

Encoding and Decoding: ACD

Encoding:CD Decoding:A

A

B C D E

A

B C D E

Trees 36

Encoding and Decoding: ACD

Encoding:D Decoding:CA

A

B C D E

A

B C D E

101

Trees 37

Encoding and Decoding: ACD

Encoding:D Decoding:CA

A

B

C

D E

A

B

C

D E

Trees 38

Encoding and Decoding: ACD

Encoding:D Decoding:CA

A

B

C

D E

A

B

C

D E

Trees 39

Encoding and Decoding: ACD

Encoding: Decoding:CAD

A

B

C

D E

A

B

C

D E

1110

