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ABSTRACT

An effective data mining system lies in the representa-
tion of pattern vectors. The most vital information to be
represented is the characteristics embedded in the raw data
most essential for the intended applications. In order to ex-
tract a useful high-level representation, it is desirable that a
representation can provide concise, invariant, and/or intelli-
gible information on input patterns.

The curse of dimensionality has traditionally been a se-
rious concern in many genomic applications. For example,
the feature dimension of gene expression data is often in
the order of thousands. This motivates exploration into fea-
ture selection and representation, both aiming at reducing
the feature dimensionality to facilitate the training and pre-
diction of genomic data. The challenge lies in how to re-
duce feature dimension while conceding minimum sacrifice
OI1 ACCUracy.

For feature selection, both individual and group infor-
mation are important, and each has its own pros and cons
in measuring the truly relevant information. The individ-
ual quantification is simple as each of the M features can be
represented by one single value. However, it cannot deal
with the inter-feature redundancy, abounding specially in
genomic data. In contrast, the group information can fully
address the mutual redundancy, but it is often too compli-
cated to process. (Note that there are 2% possible groups.)
Between the two extremes, fortunately, there is a conve-
nient compromise: the pairwise kernel - which has a low
complexity (A pairs) and yet reveals the critical informa-
tion regarding the m inter-feature redundancy. Indeed, it has
been already found very useful for many genomic applica-
tions. Especially, we shall describe how pairwise-based fea-
ture selection may be successful applied to genomic subcel-
lular localization. A special method (VIA-SVM) designed
exclusively for pairwise scoring kernels is introduced. This
is the first method that fully utilizes the reflexive property of
the so-called self-supervised training data, arising uniquely
available in multiple sequence alignment. Based on several
subcellular localization experiments, the VIA-SVM when
combined with some filter-type metrics appears to deliver
a substantial dimension reduction (one-order of magnitude)
with only little degradation on accuracy.
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1. INTRODUCTION

Let N denote the number of training data samples, M the
original feature dimension, the full raw feature can be ex-
pressed as a set of M -dimensional vectors:

[z1(2),22(2),. .., e (D]T, E=1,...

The subset feature can be denoted as an i2-dimensional vec-
tor process

y(t)

x(t) = SN

1 (), w2(t), pa (1] (1)
= [1‘51 (t)vl‘m(t)v"' 7$5m(t)]T (2)

where me < M and s; stands for index of a selected feature.

From the machine learning’s perspective, one metric of
special interest is the Sample-Feature-Ratio is % For many
multimedia applications, the sample-feature-ratios lie in a
desirable range. For example, for speech data, the ratio can
be as high as 10:1 or 100:1 in favor of training data size. For
machine learning, such a favorable ratio plays a vital role in
the training validation and statistical significance.

Unfortunately, for genomic data, this is often not the
case. It is common that the number of samples is barely
compatible with, and sometimes severely outnumbered by,
the dimension of features. In such sitmation, it becomes im-
perative to remove the less relevant features, i.e., features
with low SNR [7].

1.1. Reduction of Dimensionality (Biological Perspectives)

In genomic applications, each gene (or protein sequence)
corresponds to a feature in gene profiling (or protein se-
quencing) applications. Feature selection/representation has
its own special appeal from the genomic data mining’s per-
spective. As an example, for gene expression profiles, the
following factors necessitate an efficient gene selection. [2]

1. Non-proportionate feature dimension w.r.t. num-
ber of training samples: For most genomic applica-
tions, the feature dimension is excessively higher than
the size of the training data set. Some examples of the
Sample-Feature-Ratios % are:

1:1
1:10 or 1:100

Protein Sequences —

Microarray Data —



Such an extremely high dimensionality has a serious
and adverse effect on the performance. First, high
dimensionality in feature spaces increases the com-
putational cost in both the (1) learning phase and (2)
prediction phase. In the prediction phase, the more
features used the more the computation required and
the lower the retrieval speed. Fortunately, the predic-
tion time is often linearly proportional to the number
of features selected. Unfortunately, in the learning
phase, the computational demand may grow exponen-
tially with the number of features.

2. Plenty of irrelevant genes: From the biological view
point, only a small portion of genes are strongly in-
dicative of a targeted disease. The remaining “house-
keeping” genes would not contribute relevant infor-
mation. Moreover, their participation in the training
and prediction phases could adversely affect the clas-
sification performance.

3. Presence of co-expressed genes: The presence of co-
expressed genes implies that there exists abundant re-
dundancy among the genes. Such redundancy plays
a vital role and has a great influence on how to select
features as well as how many to select.

4. Insight into biological networks: A good feature se-
lection is also essential for us to study the underlying
biological process that lead to the type of genomic
phenomenon observed. Feature selection can be in-
strumental for interpretation/tracking as well as visu-
alization of a selective few of most critical genes for
in-vitro and in-vivo gene profiling experiments. The
selective genes closely relevant to a targeted disease
are called bio-markers. Concentrating on such a com-
pact subset of biomarkers would facilitate a better in-
terpretation and understanding on the role of the rele-
vant genes. For example, for in-vivo microarray data,
the size of the subset must be carefully controlled in
order to facilitate an effective tracking/interpretation
of the underlying regulation behavior and inter-gene
networking.

1.2. Reduction of Dimensionality (Computational Per-
spectives)

High dimensionality in feature spaces also increases uncer-
tainty in classification. An excessive dimensionality could
severely jeopardize the generalization capability due to over-
fitting and unpredictability of the numerical behavior. Thus,
feature selection must consider a joint optimization and some-
times a delicate tradeoff, of the computational cost and pre-
diction performance. From the computational perspectives,
two major and serious adverse effects are elaborated below:

¢ Data over-fitting. Note that over-optimizing the train-
ing accuracy often results in overfitting the dataset
which in turns degrades generalization and prediction
ahility.
It is well known that data overfitting may happen when
the vector dimension is relatively too large when com-
pared with the size of training data. In other words,
what matters most to classification/generalization is
the sample-feature-ratio, the ratio between the size of
the training data set and the feature dimension.

Unfortunately, for many genomic applications, the fea-
ture dimension can be as high or much higher than the

size of the training data set. For these applications,

overtraining could significantly harm generalization

and feature reduction is an effective way to alleviate

the overtraining problem.

+ suboptimal search. Relatively, the computational re-
sources available for genomic processing are never
sufficient, given the astronomical amounts of genomic
data needing to be processed. High dimensionality
in feature spaces increases uncertainty in the numer-
ical behaviors. As a result, a computational process
often converges to a solution far inferior to the true
optimum, which may compromise the prediction ac-
curacy.

To sum up, it is commonly acknowledged that the more
features selected the more information is made available.
For examples, {[4] < [[AUB)] < ... where A and B rep-
resent two features, say z; and z;, respectively, and I(X)
denotes information of X. This results in a monotonic curve
in Figure 1(a). However, when the feature size is too large,
the degree of sub-optimality must reflect the performance
degradation caused by data over-fitting and limiting com-
putational resource. (See Figure 1(b).) This implies a non-
monotonic property on achievable performance w.rt. fea-
ture size, as shown in Figure 1(c¢). Accordingly, but not
surprisingly, the best performance is often achieved by se-
lecting an optimal subset of features.

Here, let us use a subcellular localization example as
an evidence to support such a non-monotonic performance
curve and highlight the importance of feature selection.

Example 1 Subcellular Localization. Profile aligriment SVMs
[8] are applied to predict the subcellular location of pro-
teins in an eukaryotic protein dataset provided by Reinhardt
and Hubbard, 1998 [9]. The dataset comprises 2427 an-
notated sequences extracted from SWISSPORT 33.0, which
amounts to 684 cytoplasm, 325 extracellular, 321 mitochon-
drial, and 1097 nuclear proteins. 5-Fold eross validation
was used to obtain the prediction accuracy. The accuracy
and testing time for different number of features selected by
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Figure 1: (a) Monotonic increasing property on the total
information available. Upper Curve: Non-monotonic -
creasing property on the actual classification performance
achievable. (b) Relative performance versus the feature size
taking mto consideration of data over-fitting and limited
computational resowrces. (c) The best performance is of-
ten achieved by selecting an optimal size instead of the full
set of the features available.

a Fisher-based method {12] are shown in Figure 2. This ex-
ample offers an evidence of the non-monoronic performance
property based on real genomic dara.

O

2. FEATURE FORMATS: AXIS-BASED VERSUS
VECTOR-BASED FORMAT

Feature selection and representation depends verymuch on
the format mn which feahwes are mathematically described.
Note that for microarray data, there are very few sam-
ples and very large mumnbers of genes. Commonly, there
are few samples! and several thousands to tens of thousands
genes. (For example, in a typical yeast database, there are
around 7000 genes with less than 20 samples.) For most

YFewer than 100 samples available for training and testing altogether

Max. Acc. = B7.32%; No_of Fealures ot Max. Ace. = 482

Optimal point

Overall Accuracy (%)
Rec. Time (sec.|
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Figure 2: Real data supporting the Monotonic increasing
property. Upper Curve: Performance reach a peak by se-
lecting an optimal size instead of the full set of the feahwes
available. Lower curve: the computational time goes up
(more than linear rate) as the number of features increases.

applications, the genes are the features of interest, i.e., one
gene corresponds to one feature.

To iltustrate this point, let us use a fictitious microarray
matrix M € R52 with 3 genes and 2 conditions as dis-
played in Figure 3. In order touse a vector space to describe
the data shown i the table, it is necessarily to first specify
the bases in which the vector space is represented. When
the data are pictorially displayed, such bases correspond to
the axes in a coordinate system.

There are are two possible bases, each leading to its own
mathematical format:

1. Axis-Based Feature Format

In the first case, the bases corresponds to the features
(genes).

Figure 3(a), one feature is represented by one axis.

In general, the expression levels of M genes in IV
samples can be represented by N vectors an M -dim
vector space. Here each vector (sample) is repre-
sented as an JJ -dim vector:

%i = [pa(1), 2a(2); - s a(M))Fin=1,---, V.
In this case, feahure selection becomes the question of
axis selection, e.g., which of the three genes should be
selected.

2. Vector-Based Feature Format

In the above, the bases corresponds to the genes, which
are regarded as features in this context. Alternatively,
the bases corresponds to the conditions, cf. Figure 3(b).

In this case, the expression levels of M genes in IV
samples are represented by M vectors in an N-dim
vector space. Here each feahure is represented as an
N -dim vector:



Normal Cancer Genecy Cancer
Sample Sample

GeneA (20 0.1
GeneB |20 oo
Gene C |01 3.0

(a)features=axes of the vector space

Gene A Gene B Gene C

Normal 20 20 0.1 sy
Sample i

al13) 4
Cancer 0.1 0.0 30 &
Sample LITF) i’.]!m|

=" Gample

(b)features=vectors in the vector space

Figure 3: (a) In the Table, each row stands for one feature
which is represented by one axis. The feature selection be-
comes the question of axis selection, e.g., which of the three
genes should be selected. The redundancy between the fea-
tures can be determined by the similarity between the fea-
tures. For example, features A and B have high similarity,
due to high (pairwise)correlation or the high predictability
of one from the other. (b) In the transposed Table, cach row
stands for each of the two conditions: normal versus cancer.
Each condition is corresponding to one axis. In this case
each data point represents one gene. Genes A and B again
exhibit high similarity. However, now the similarity is be-
ing manifested by their close distance in the Cartesian co-
ordinates. Consequently, they are represented by the same
cluster if the data points are divided by the subclusters.

7
x(m) = [z1(m), z2(m), - ,eny(m)]" ,m=1,--,
Thus, the feature selection problems involves the se-
lection of most representative vectors.

There is advantage to transpose the coordinate sys-
tems such that each patient is corresponding to one
of the axes while each gene is displayed as a vector.
This brings us to a more manageable situation where
there are a lot of (thousands) data points on a low-
dimensional (less than 100) vector space. Note that
the vectors with lower dimension are much easier to
handle computationally.

In this case, gene selection is equivalent to selection
of vectors. For this, feature cluster is a powerful no-
tion for feature selection and representation. It often
useful to to first find clusters with best cluster sep-
arability and then determine the best representative
feature(s) for each of the clusters formed. ?

?Notion of feature cluster does not apply under the context of axis-
based format.
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Figure 4: This figure illustrate the different prior knowl-
edge of (a) unsupervised and (b) supervised, and (c) self-
supervised training data. In the regular supervised training
data, the class labels are assigned to the vectors. In the self-
supervised situation. prior known group labels are assigned
to the features, instead of the vectors.

3. UNSUPERVISED VERSUS SUPERVISED
FEATURE SELECTION AND REPRESENTATION

The features selected serve very different objectives for un-
supervised versus supervised learning scenarios, each in-
ducing its own type of criterion.



3.1. Selection/Representation Criteria: Unsupervised Cases

In the unsupervised training data, the class labels are un-
known a priori. See Figure 4(a). Under the axis-based
format, there are two very different ways of designing the
selection criteria.

+ Data fidelity perspective:

How well does the partial information reveal a full
picture of the original information? The criterion is
motivated by how much of the original information
is retained (or lost) when the feature dimension is re-
duced. In terms of fidelity-driven metric, there are
two major types:

— One is based on the so-called mutual informa-
tion: 7(x|y).

— Another is one which minimizes the reconstruc-
tion error:

e(xly) = i, [[x — %yl

where %y denotes the estimate of x based on y.

¢ cluster separability perspective:

How well does the partial information do in separat-
ing data into clusters each bears its own distinct bi-
ological significance. The criterion is motivated by
how effectively can the selected features reveal the
separability of the subclusters, which is crucial for
the classification performance. A popular metric of
this type is via a higher-order statistics, known as in-
dependent component analysis (ICA). For more dis-
cussion on this subject, see [10].

Under the vector-based format, many unsupervised clus-
tering techniques, such as K-means and SOM, have been
very popular. Moreover, these techniques may be used to
cope with both the data fidelity and cluster separability per-
spectives.

3.2. Selection/Representation Criteria: Supervised Cases

In the regular supervised training data, the class labels are
assigned to the vectors. See Figure 4(b). The state-of-the-
arts feature selection methods have two types: open-loop
(filter-type) and closed-loop (wrapper-type) approaches.

+ Filter Approach A primitive supervised selection scheme

is the so-called filter approach. Its processing sim-
plicity makes it a promising and popular selection ap-
proach. For example, an SNR-type criterion based on
the Fisher discriminant analysis is very appealing. [4]
Such a feature selection approach entails computing

Fisher criterion vs. Gene index

o.08

0.08

Fisher criterion

0
0 1000 2000 3000 4000 5000 6000 7000 60C0
Gene index

Figure 5: The Fisher disecriminant ratio (FDR) of 7192
genes in the acute leukemia dataset [4]. The FDR cutoff
point (threshold) and the corresponding number of remain-
ing genes are shown in Table 1

Threshold 0.01 0.02 004 0.06
No. of Remaining Genes 596 142 19 8

Table 1: The FDR cutoff point (threshold) and the corre-
sponding number of remaining genes.

Fisher’s discriminant J(z;), ¢ = 1,..., M, which
represents the ratio of inter-cluster distance to intra-
cluster variance for each individual feature.

One variant of SNR is Fisher discriminant ratio (FDR)
[11]: )
(f —17)
(e)2+ (o7 )
As an illustrative example, Figure 5 shows the FDR of
7129 genes in an acute leukemia dataset [4] that con-
tains two types of acute lenkemia: AIL and AMI..
Evidently, only a small number of genes have large
FDR, meaning that only a few genes are useful for
differentiating the two types of acute leukemia. Ta-
ble 1 shows the numbers of selected genes at different
cutoff points.

FDR(f) = (3)

¢ Wrapper Approach However, the ultimate objective
for supervised cases lies in a high classification ac-
curacies. Ideally speaking, if the classification infor-
mation is known, denoted by ', a most direct mea-
surement could be one based on the following type
of mutual information: 7(C'|x) versus I(C'|y). More
exactly, it is desirable to have

I{Cly) = I(Clx)

while keeping the feature dimension 72 as small as
possible. However, the above formulation is numeri-



cally difficult to achieve. The only practical solution
makes use of the feedback from the actual classifica-
tion result, which is computationally very demanding.
The feedback-based method is related to the wrapper
approach [14,15], cf. Figure 4(b).

To strictly implement the exact formula given above
will be computationally very demanding. Realisti-
cally speaking, motivated by computational consider-
ation, a popular and simplifying assumption is to do
feature selection is to make use of some kind of lin-
ear classification assumption. Let Cy, denote linear
classification. The goal is now focused on

w(Crly) = w(Crlx)

so that the decision boundary based on the reduced
feature set can best approximate that derived from the
full feature. This forms the basis of the “wrapper ap-
proach”, in which a large value of w; implies that the
4 — th feature is more important.

3.3. Self-Supervised Training Data

Assuming that the features are represented by the axes. In
the regular supervised training data, the class labels are as-
signed to the vectors. In contrast, for the self-supervised
situation, prior known group labels are assigned to the fea-
tures, instead of the vectors. This is illustrated in Figure 4(c).
3 In genomic data mining applications, there arises such a
peculiar type of “self-supervised” scenario. In Section 10,
a subcellular localization example will be treated with great
details.

4. FEATURE EVALUATION: RELEVANCE AND
REDUNDANCY

Optimal feature selection/representation hinges upon the fol-
lowing two criteria:

1. Relevance and Signal Strength: ndividual Feature
Criterion. Only vital representations or features need
to be extracted. Some features are much more rele-
vant than others. Some genes exhibit very distinct re-
sponses between two different types of samples, but
others have nearly random behavior. This makes one
gene more relevant than the other. More exactly, un-
der supervised framework, some feature have higher
SNRs, as they exhibit distinct responses between two
classes of samples, so they are the preferred features.

2. Redundancy: Initer-Feature Criterion.

% Another variant of self-supervision (net shown) is that, in addition,
class labels are also assigned to the vectors.

Table 2: Some examples on how to make use of the features
in different formats.

axis-based format ‘ vector-based format

Relevance: SNR length (rare*)

correlation

Redundancy: distance

There are also many features which are closely re-
lated and therefore carrying duplicated information.
If such redundancy is well identified and obviated, it
could allow a substantial reduction of gene dimension
without missing much total information.

Recall that there are two possible ways to specify the
coordinates: axis-based and vector-based formats. Accord-
ingly, the relevance and redundancy information have dis-
tinct role for each of the two formats. For examples, un-
der supervised scenario and the axis-based format, then the
strength of a feature may be best reflected by its SNR [4].
Under unsupervised scenario and the axis-based format, then
the inter-feature redundancy (between any two features) can
best be represented by their correlation. A high correlation
means a good predictability of one feature from another. In-
deed, the greater the inter-feature redundancy, the higher
the correlation, and then the better the predictability. On
the other hand, assuming the vector-based format, i.e. fea-
tures are represented by vectors in the vector space, then two
features with close distance (or close similarity) are likely
to bear high inter-feature redundancy. These examples are
summarized in Table 2.

5. INDIVIDUAL VERSUS GROUP INFORMATION

A representative feature is the one that can represent a group
of similar features. Denote 5 as a feature subset, i.e., § =
{1y}, i =1, -+ ,m. In addition to the general case, what of
most interest is either a single individual feature m = 1 or
a pair of features m = 2. A generic term [(.5) will be used
temporarily to denote the information pertaining to 5, as the
exact form of it has to depends on the application scenarios.

There are two contrasting types of quantitative measure-
ments of the feature information:

1. Individual information: The quantification cost is in
the order of O (A).

2. Group (three or more) information.

There are totally O (2%) possible groups.

Both individual and group representations have their own
pros and cons in measuring the truly relevant information.



The individual quantification is simple as each of the M fea-
tures can be represented by one single value. However, it
cannot deal with the inter-feature redundancy, abounding
specially in genomic data. In contrast, the group informa-
tion can fully address the mutual redundancy, but it is often
too complicated to process.

5.1. Individual Feature Information

Given a single feature x;. its information is denoted as I(x,).
Such a measure is often the most effective when the features
are statistically independent. This leads to the individual
ranking scheme, which is suboptimal but the most straight-
forward and fast. In this scheme, each individual feature
is independently and simultaneously evaluated. Therefore,
ranking only considers the information and/or discrimina-
tive ability of individual features.

In unsupervised scenario, the signal strength can be adopted

as the selection criterion. However, more effective applica-
tions arise for feature selection in supervised learning. Un-
der supervised framework, some feature have higher SNRs,
as they exhibit distinct responses between two classes of
samples, so they are the preferred features.

Let us use a hypothetical example to illustrate the indi-
vidual ranking scheme.

Example 2 3-Party Problem — Without Inter-feature Redun-
dancy.

The individual ranking method works the best when the
redundancy plays no or minimal role in affecting the final
ranking. In this example, each area in Figure o{a) and (b)
represents one feature. The size of the area indicates the
information or discriminativeness pertaining to a feature.
In Figure 6 (b), ‘overlapping™ between areas reflect the de-
gree of inter-feature redundancy. In the special case, such
as Figure 6(a), no “overlapping” symbolizes no mutual re-
dundancy. In this case, the combined information of any two
Sfeatures is simply the sum of two individual amount. For ex-
ample: I{AUB) = I{A)+1(B) = 35+30 = 65. When all
the features are statistically independent, it corresponds to
the fact that there is no overlap pictorially. All the selection
schemes lead to the same and correct result. This is shown
in Table 3(a).

O

The downside of considering the feature individually is
that it does not fully account for the redundancy among the
features. For example, it is very possible that two highest-
rank individual features share a great degree of similarity.
As a result, the selection of both features would amount to
a waste of resource. In fact, one needs to take the inter-
feature relationship (such as mutual similarity/redundancy)
into account. This problem can be fully resolved (possibly

A(35)

B(30)

3-Party Problem: (a) Without inter-feature redundancy

3-Party Problem: (b) With inter-feature redundancy

Figure 6: (a) 3-party problem without redundancy. No
“overlapping” between elements symbolizes the fact that no
mutual redundancy exists between the features. (h) 3-party
problem with redundancy, where A(35), B{30}), {'(25) ex-
hibit a peculiar overlapping pattern. “Overlapping” between
elements symbolizes the fact that mutual redundancy exists
between the features.

overdone) by adopting the group information approach dis-
cussed next.

5.2. Group Feature Information

The individual information represent is computationally most
simplistic. Full information to represent group (three or
more features) will be highly involved and costly from the
computational perspective.

In order to optimally evaluate the total information con-
tained in a subset of multiple-features, the most prudent
approach is to have the entire group’s information content,
evaluated collectively as an undivided entity.

Example 3 3-Party Problem — With Inter-feature Redun-
dancy.

The scenario is illustrated in Figure 6(b). If only one
Jeature is to be selected, since I(A) > I(B) > I{C), the



(b) Backward irmovation: A wr.t. ABC

Figure 7: Innovations for 3-party problem with redundancy:
(a) Forward innovarion: Suppose that A is already chosen.
We now search for a new member to admit to the subset.
The redundancy is shown as the overlapping region of A
and B. The mnovation of B (wr.t. A)is the remaining re-
gion after removal of its redundancy with A. Note that the
innovation of B (wr.t. A)is larger than C (wr.t. A), there-
fore, B will be chosen as the new member. (b) Backward
innovarion of A wxrt. ABCis equivalent to the net informa-
tion loss when A is eliminated from the full set.

correcr solution is A. If more than one fearure are 1o be
selected, then the redundancy among the features selecred
plavs a role. For example, it is often the case that a gene A
is very discriminative on its own, and so is gene B. Bur the
information revealed by gene A averlaps significanty with
thar of gene B.

The inter-feature redundancy implies thar

I{AUB)<I(A)+I(B) )

In Figure 6(b), such inter-feature redundancy, is pictorially
display as “averlapping™ of 2 corresponding elliptic areas.
The size af overlap indicares the the amount of “information
discount”™ in Eq. 4.

In this example, there is a large overlap berween A and
B, which is, visually speaking, abour half of the size of B
(e % = 15 ). Therefore,

I{AUB) ~ 50 < 55 = I(A) + I(B)

Selection Method Select 1 | Select 2 out of 3
Feature Features
[ndependent Eanling A AR
[Forward Selection A AR
[Backward Elimination Py AR
Correct Solution Fis AR

3-Party Solution: (a) Without inter-feature redundancy

Selection Method Select 1 | Select 2 out of 3
Feature Features

Tndependent Ranking A AB

[Forward Selection A AB

[Backward B BC

[Elim ination

Correct Solution A BC

3-Party Solution: (b) With inter-feature redundancy

Table 3: (a)-(b) Tables illustrating searchresults of different
strategies.

In contrast, there is virtually no overlap berween B and C.
I{(BUC)~585=1(4)+I(B)
Therefore, (AU B) < I(B U C). If a two-feature subser

is to be selected, the optimal and correct solution is B and
. Nore thar the individual ranking would select A and
B, because they have the two highest scores, which is an
incorrect selection. See Table 3(5).

O

The importance of group information is evident:

¢ Unlike the individual ranking approach, the perfor-
mance of group evaluation can take inter-feature re-
dundancy into account. In fact, this is what theoret-
ically required if the truly optimal decision i to be
reached.

¢ Unlike the consecutive ranking (to be discussed mo-
mentarily), its solution is relativelyfair, because whether
a feature is evaluated earlier or later would not affect
its selection or elimination.

The price of group ranking is, however, its excessively high
computational cost. In order to find the best combination
of feahres, an exhaustive search would consider every of
2 possible combinations.” Such a formidable computa-
tion cost would render the group evaluation approach im-
practical in most, if not all, applications.

SEven if only those subsets of size m or lower are searched, it still
amounts to Off ¥ 2™ possible combinations. The search space can be
substantially reduced to onty O groups, if the size of subeets is pre-
determined to be exactly m.



preset number of features is reached or a pre-specified
performance is achieved.

5.3. Tradeoff Between Information and Computation

It is evident that the individual information misses the inter-
feature redundancy, while the group information is too com-
putationally too costly to implement. Some remedies must
be found.

To incrementally angment the current subset 5 (with
m features) to ST (with 2 - 1 features) involves a
very manageable search space.

At the »-th stage, There are M — m candidate fea-
tures to select from, thus there are exactly M —m for-
ward innovations need to be computed.” Pictorially,
an example of the forward innovation is illustrated in
Figure 7(a).

¢ One viable solution is based on a consecutive search
strategy in which features are added or dropped on
a one-by-one basis (simplifying the computation by
doing so) and at the same time taking into account
the relevance and inter-feature redundancy. This is

the subject of Section 6.
¢ subject o Section {a) Computationally, it should be feasible to evalu-

ate each of the A/ — m groups and decide the
best feature to admit, i.e. via a group ranking
strategy.

¢ Another option is based on the pairwise relationship.
Computationally, its quantification cost amounts to
only O{M?) pairs. Moreover, this approach can cope
well with inter-feature information while incurring a (b)
very affordable computational cost. For more details,
see Section 7.

However, this is not very computationally effec-
tive as it fails to utilize the fact all the A — m
groups are different by only one feature. This
motivates to adopt a notion of innovation com-

6. INNOVATION AND ITS APPLICATION TO ponent, popular in the linear estimation litera-
CONSECUTIVE SEARCH OF FEATURES ture.

The consecutive ranking is an evaluation on a one-by-one 7 Backward Elimination:
basis. It provides a reasonable compromise between (1) ac-

Most-Dispensable-First-Eliminated.
curacy and (2) cost.

This is a recursive search scheme, usually starting at

1. The advantages are two folds. (1) accuracy: Rele- the full set. In this scheme, at each step, features are

vance and inter-feature are both taken into account.
See Figure 7. (2) It enjoys a substantial computa-
tional saving when compared with the comprehensive
and exhaustive evaluation of the group scores.

. The downside is clear too. The order of feature selec-

tion can significantly affect the inter-feature redun-

dancy revealed, which in turns affect the final out-

come of the selection. In other words, any feature’s

selection/elimiantion will depend on whether it is eval-
nated earlier or later.

removed from the current subset based on a one by
one basis. ® In this case, it is more meaningful and
direct to evaluate the information loss (with respect
to the full set x) due to the absence of the dropped
features from the set. This is denoted by T(x)— I(y).
The objective is to reduce the feature dimension as
much as possible but giving up a minimum loss of
performance (if any). Therefore, the feature which in-
curs the least loss of information is deemed the most
dispensable, thus becoming a natural target to elimi-
nate.

There are two ways to conduct an consecutive search:

To remove one feature from the current subset 5 (with

m features) to obtain a new subset 5= (with m — 1
features), we need to deal with a very manageable
search space, because there are only . candidate fea-

1. Forward Search: Most Innovative First Admitted.
Such a search usually begins at an empty feature set,
and then augments the membership by a most-innovative-

first-admitted strategy. In the recursive search scheme,
one feature is added to the existing chosen subset at
each step. The importance of the candidate features
is judged by by how much extra added-value it brings
to the existing subset, instead of its individual merit
or strength. In other words, the selection a feature de-

tures to select from. The incurred loss of information:
Loss = I{(8) — I(87)

will serve as the basis of backward innovation, which
is pictorially illustrated in Figure 7(b).

pends exclusively on how well can it complement the

current subset. 8 The search continues until either a Example 4 3-Party Problem: Forward Selection and Back-

ward Elimination

5Once a feature is admitted, it will not be dropped anymore. Tn an iter-
ative procedure, though, an opportunity is provided to have the relevance
of all features get reevaluated again.

"In total, it amounts to M +{M — 1} +-- -4+ 1 = O(M?) innovations.
80Once afeature is eliminated, it will not be reconsidered anymore.



Let’s continue the example illustrated in Figure 6(b). In
the forward search, A will be chosen in the first round. In
the second round of selection, B will be a better choice to
be teamed up with A. So the best two features would be A
and B, again an incorrect selection. See the Table 3(b).

Ay already discussed just now,

As shown in Figure 7(b), feature A is deemed to be most
dispensable since it causes the least loss of information.
Therefore, even though A has the most information (i.e. the
highest strength) by itself, it is nevertheless the first to be
eliminated if reduction is necessary.

The good new is the the best two-feature subset contains
B and C. This is correct (optimal) solution as it matches
with the group evaluation. Unfortunately, with feature A
already eliminated in the first round, this also spells a bad
news. If only one feature is needed in the final selection,
then the backward approach has to find a solution from the
two remaining features B or C. But both are incorrect
selection, because the correct solution A is already elimi-
nated. Let us complete the backward search. In the second
round, feature B would beat feature C and get selected. The
search results are summarized in Table 3(b).

]

7. PAIRWISE FEATURE INFORMATION

7.1. Why Pairwise Information?

Both individual and group representations have their own
pros and cons in measuring the truly relevant information.
The individual quantification is simple as each of the M fea-
tures can be represented by one single value. However, it
cannot deal with the inter-feature redundancy, abounding
specially in genomic data. In contrast, the group informa-
tion can fully address the mutual redundancy, but it is often
too complicated to process. (Note that there are 2 possible
groups.)

Between the two extremes, fortunately, there is a conve-
nient compromise: the pairwise kernel. To represent pair-
wise information, it incurs a very affordable quantification
costis O(M?). Yet, the pairwise information reveals plenty
of inter-feature information (such as similarity and redun-
dancy). Moreover, the application of use of pairwise infor-
mation for genomic processing has already a long history.

7.2. Types of Pairwise Matrix

The pairwise information appear in many forms, including:
1. Pearson correlation coefficient (for axis-based format)
2. Distance (for vector-based format)

3. Similarity (for sequence-based case)

4. Kernel function (needs verification of Mercer condi-
tion for some pairwise matrix).

7.3. When/How to Use Pairwise Information?

Given that pairwise quantification nvolves O(M?) scores,
each very simple to compute, and that group-wise quantifi-
cation amounts up to 2% scores, each very costly to derive.
This represents a very drastic computational contrast. The
next important issue is how adequate can pairwise informa-
tion be used to evaluate group information. A comprehen-
sive answer would have to depend on for what kind of ap-
plications the information is intended. *

The pairwise information can be as effective as group-
wise quantification in at least three important application
scenarios:

1. Feature selection based on prediction (i.e. reconstruc-
tion) and mutual information. This should not be too
surprising as the (pairwise) correlation and covari-
ance coefficients are for long known to be effective
for linear prediction. The details as to how to use
pairwise information are to be deferred to Section 7.

2. Cluster discovery.

Section 8 will show that the pairwise information is
suitable - and in fact effective - for unsupervised clus-

ter discovery, including k-means, hierarchical cluster-
ing, and SOM.

3. Self-supervised training sequence data.

For pairwise and/or multiple sequence alignments, we
aim to classify a very peculiar type of “self-supervised”
training sequence data. Section 10 will show that how
the pairwise information, in combination with SVM,
can lead a novel and effective feature selection ap-
proach.

8. CASE STUDY ON PAIRWISE INFORMATION:
FEATURE SELECTION BASED ON MUTUAL
INFORMATION

This section will focus on the unsupervised learning from
the axis-based perspective. Here, each feature is represented
as an axis of the coordinate system, say z;. To simplify the
illustration, for all the unsupervised cases, we shall assume
for the time being that all the feature vectors are zero-mean
Gaussian random process. '° The (pairwise) covariance

?As a counterexample, while pairwise information may be useful for
problems with second-order statistics, such as predictability, it may not be
too useful for ICA type processing, which irrvolves ahigher-order statistics.

2Thus % follows the distribution
1 _
O exp{— 5 (TR, 10))

1
v (2m) | R

10



matrix is estimated as R = {r;;} where r = E[z] z;] ~
& g 225 (8).

This section will purposely treat feature selection and
feature representation side by side. While the feature se-
lection involves the selection of most useful axes, the fea-
ture representation involves finding an optimal linear com-
binations of them as most effective representations for data
processing. Obviously, the former is only a special case of
the latter. In feature selection, a selected feature can be ex-
pressed as a special linear combination, ¥ = [wy ... W) Ty,
where one and only one of {w;} can be nonzero. If m
features are selected, then they form a subset feature vec-
tor, denoted as an r-dimensional vector process y(t) =
(@, (1), 2, (1), ,ze_ (1)]T, where s; stands for index of
a selected feature.

8.1. Feature Selection Criteria

To determine the best features, two popular criteria from the
fidelity perspective are as follows:

¢ Reconstruction Error criterion:

Due to its mathematical simplicity, the prediction er-
ror has been a popular criterion for feature selection
and dimension reduction. The goal is to the minimize
least-squared-error (1.SE) of reconstruction:

e(xy) = min [x —%y|

where x is the original vector and the best estimate of
T given vy is:
Xy = E(x]y) = Ray [Ry}*ly-

Thus LSE is

o =y |* = llz — Ray[Ry) " ull*.

While the prediction error is useful for data compres-
sion, it’s suitability for genomic information process-
ing needs to be carefully analyzed.

¢ Mutual Information Criterion: The “mutual infor-
mation” is denoted by I(x|y):

1Y) = Tlule) = H() — HGle)
= H() = log (0| Ry) + 2 og ¢

Note that LSE and MIC do not vield the same selection
in general. This can be demonstrated by a simple example:

where a data vector are represented by an M -dimensional zero-mean wide-
sense stationary vector process x(t) = [x1(t), x2(t), - ,xa (8)]7.

Example 5 Selection of Best Feature — Dependent Case.
Given 3 features with covariance matrix

E=|08 1 0

o For LSE criterion, the choice is 1.

o For MIC criterion, the best feature for the MIC is z3.

Since the two solutions are different, which one would
be preferred and why? Two major reasons may be used to
argue in favor of the use of MIC criterion.

s application perspective: The problem of reconstruc-
tion error criterion is that it does not consider the
strong inter-feature redundancy between z, and zo.
As such it may lead to a misleading selection for,
say, classification purpose. On the other hand, MIC is
likely to be more suitable for genomic classification
applications, because it truly reflects the net informa-
tion gained or lost.

s computational perspective. For the LSE criterion,
the selection depends on the inter-feature relationship
among all the M features. In contrast, the MIC crite-
rion depends only on the m individual feature(s) con-
cerned. More precisely, the LSE criterion is a func-
tion of R, and R, while the MIC criterion is only a
function of | R,;|. (See also Eq. 5.) Therefore, the rest
of section will place its focus only on the MIC.

8.2. Innovation for Efficient Search

The consecutive search approach offers a good compromise
between accuracy and cost. Once some features are already
selected, then we should search a feature which could best
complement the existing selection.

It implies that the innovation component associated with
such a feature should have the highest strength. There-
fore, our consecutive search strategy is built upon an effi-
cient computation of the “innovation” component. More-
over, This such an approach can substantially expedite the
consecutive search process.

Let y denote the feature already selected. It can be writ-
ten in a linear representation, ¥ — W7z, where W is a
M x 1 matrix, then the (forward) innovation component is
r—%y =z — R, WWT R, W™y

—
14

As illustrated in Figure 7(a), the innovation efficiently
filters out the inter-feature redundancy, so its remaining com-
ponent fully reflect the “new” information which comple-
ments the existing selection. Let v denote the feature al-
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MIC-ES
x71 (optimal)
1, T3 (incorrect)

MIC-BE
x5 (Incorrect)
Za,x3 (optimal)

1-feature
2-features

Table 4: The selections of Optimal (group ranking) selec-
tion, forward selection, and backward elimination for the
case in Example 6.

ready selected and # its innovation vector. For MIC crite-
rion!! | the next feature to select is

argmax E{|]*} (5)

Naturally, this procedure can be carried out recursively until
we select enough number of features.

The backward innovation component can also be de-
rived in a similar fashion. (Omitted here.) Generally speak-
ing, the forward search and backward elimination will yield
suboptimal, and different, solutions. This is easily verified
by the following example.

Example 6 Forward Search(FS) vs. Backward Elimination
(BE)

Given 3 features with covariance matvix

1 9 4
ER=]9 9 0
4 0 8

10 make selection by MIC, the ranking depends on the
determinant: |R,|. Note that x1 is the top choice by FS,
because 1 > 0.9 > 0.8, However, x1 is also the first get
eliminated by BE. 12

In summary,

o The FS's one-feature choice 1, the correct selection,
and for 2 features: 1 and x5, which is incorrect.

o The BE’s one-feature choice is x4 - an incorrect solu-
tion, and for 2 features: xo and 3, which is correct.

It is interesting to note that x is the first to be chosen
by FS, but it is also the first to get eliminated by BE. On
the other hand, xo is the finalist by BE, but it will miss the
selection by FS if two features are selected. See Tuble 0.

]

UMIC Criterion Since y is independent of v, I{|y, ¥new) =
Hzly) + I{z|vnew). Since y is already fixed (in the FS scheme), so
we focus on the optimization of I{x|w;} = H{;} which is afunction of
E{|14|%}. This confirms Eq. 5.

2 Removal of = results in a least reduction of information:

1

det[ P ](: 0.09)<det[ o } (=0.64)<det[ o 08]

8.3. Feature Representation

Given any selected feature (or more generally any linear
representation), y, it can be written as y = Wx. Since a
linear combination of Gaussian variables are also Gaussian,
hence y has a probability density function of the form

(y"Ry'y)}

0) = ————op{ 3
g G Ryl L2

where 11, = WE, WT is the covariance matrix of y.

In statistics, a popular approach of extracting represen-
tation with maximum information is the principal compo-
nent analysis (PCA). To retain the maximum amount of rel-
evant information, the principal components (1) extract the
most significant features that can best manifest the original
patterns, and at the same time (2) avoid duplication or re-
dundancy among the representations used.

Mathematically, the PCA is to find a matrix W such that
an optimal estimate %(%) of x (¢} can be reconstructed from
y(t) in terms of the mean-squared error. The solution W
is formed by the first m eigenvector e;,¢ = 1,2,...,m.
In other words, the first . principal components are the
eigen-components corresponding to the largest 1 eigenval-
nes: A, 1=1,2,...,m.

Two compatible questions may be raised:

¢ From the prediction error’s perspective: “What is the
optimal m-dimensional linear representation, ¥, which
minimizes the following LSE: || x — Xy | ?

¢ From the information theoretical perspective: “What
is the optimal m-dimensional linear representation,
¥, which maximizes the mutual information I(x,y)?

The solution to both questions converge to one and the same.
The answer is the standard PCA, i.e.

Wops = Mlwy . ..wm}T

where M = R™*" is any invertible matrix. Therefore, as a
sort of unification, PCA serves as the optimal solution for
both the prediction error and mutual information criteria.

9. CASE STUDY ON PAIRWISE INFORMATION:
CLUSTER DISCOVERY

There exist numerous clustering techniques for multidimen-
sional vector space, most of them are "friendly” to the use
of pairwise information. For examples, with some modifi-
cation, K-means and EM algorithms can be applied to the
pairwise information. In the following, it will be shown that
each step of the learning and classification algorithms can
be made based on the use of pairwise information.

12



9.1. Cluster Discovery on (New) M-Dimensional Vector
Space

Let us use Eq. 8 to illustrate how K-means {or EM) can be
obtained via the pairwise formulation. For simplicity and
without loss of generality, let us assume a linear pairwise
kernel:

Kz;,z;) = a:?scj (6)

Thus the § — th column of the pairwise matrix may be ex-
pressed as z; = T'z;, where

T= . )

Enr

Recall that the K-means or EM, when applied to the original
vector space, amounts to minimization of the following

K
Bk X) = 3N b @ — O ®)

t j=1

Given the pairwise information, the same clustering algo-
rithms may again be applied to the new vector space of
z = Tz. This amount to the optimization of a new crite-
rion - which is a simple transformation of Eq. 8:

K
E'(h,Z) =3 > k@) T —p ) ©)

t g=1

Note also that the clustering is now performed on the -
dimensional space, instead of the original N-dimensional
space.

Since the “distance-metric” is now changed, therefore it
will in general yield a cluster discovery result different from
the that obtained according to the original vector space.

The same derivation can be extended in a straightfor-

ward manner to any nonlinear pairwise kernel function. Strictly

speaking, it can lead to a very different cluster result. Nev-
ertheless, with the potential promise of choosing a suitable
nonlinear kernel, a good or improved clustering performance
is rather realistic.

The same idea can be extended to other more structured
cluster discovery techniques such as hierarchical clustering,
and SOM. [6] [3] [5]

9.2. Nonlinear Pairwise Kernel Functions

The M-dimensional cluster discovery is readily applicable
to various forms of nonlinear kernel functions. Three typi-
cal examples are:

K(x,x;) = (1—0—)2;(2')?, p>0

x — % ||?
K(X,Xz) = exp{—|20_2|}
1

xx%; +b

1+e  <F

Polynomial Kernel

RBF Kernel

Sigmoidal Kernel Kix,x;) =

9.3. Similarity of Two Sequences: Pairwise Scoring Ker-
nels

The notion of similarity can be further extended to patterns
beyond a vector space, i.e. non-vector data. It is espe-
cially convenient for genomic data mining, one constantly
encounters sequences or time-series, for which vector space
no longer serves a suitable mathematical platform. Never-
theless, the treatment via pairwise similarity score matrix
remains largely unchanged.

Note that the comparison of two temporal sequences
is often hampered by the fact that the two sequences of-
ten have different lengths whether or not they belong to the
same family. To overcome this problem, pairwise compar-
ison between a sequence and a set of known sequences has
been a popular scheme for creating fixed-size feature vec-
tors from variable-length sequences [8,16, 17]. This pro-
cess 1is referred to as vectorization. Suppose that we have
M sequences, then each sequence is converted into a (col-
umn) vector of dimension M with entries representing the
pairwise similarity between that sequence with all of the A
sequences. In total, there will be M such A -dimensional
{column) vectors. For example, in Figure 8, three sequences
S0 8@ and 5 are converted to three 3-dimensional
column vectors. Together these vectors form an M x A
matrix, named the kernel matrix.

Denote D = {S@), .., ST} as a training set contain-
ing T' protein sequences. Let us further denote the operation
of PSI-BLAST® search given the query sequence S as

40 = qz5(3(%‘)) LG R {p(ﬂ} Q(%‘)}}

where P® and Q@ are the PSSM and PSFM of S re-
spectively.’ Because these matrices are based on the in-
formation of a large number of sequences that are similar
to the query sequence, they contain rich information about
the remote homolog of the query sequence, which may help

13To efficiently produce the profile of a protein sequence (called query
sequence), the sequence is used as a seed to search and align homologous
sequences from protein databases such as Swissprot [13] using the PSI-
BLAST program [19].

14The homolog information pertaining to the aligned sequences is repre-
sented by two matrices (profiles): position-specific scoring matrix (PSSM)
and position-specific frequency matrix (PSFM). Both PSSM and PSFM
have 20 rows and L columns, where L is the number of amino acids in the
query sequence.
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improves the prediction of subcellular locations and pro-
tein functions. Given the profiles of two sequences 5(%)
and 5 , we can apply the Smith-Waterman algorithm [20]
and its affine gap extension [21] to align P@, Q(t—), P@,
and Q(j) to obtain the normalized profile-alignment score
C(gE, gl 13

The scores {{(¢), gé(j))}g:j:i constitute a symmetric

matrix Z whose columns can be considered as T'-dimensional

vectors:

(V= [ 89D o GYRBWT G= e D
(10)
An M -class protein prediction problem can now be solved
by M one-vs-rest SV Ms:

Fal8) =3 g #momsK($(8), (595 (1)

where 5 iz an unknown sequence, m = 1,..., M, 3., ; €
{+1, —1}. 8, contains the indexes of support vectors, ¢, ;
are Lagrange multipliers, and

K($(5)), $(59) = 4(¢,¢9)

iz a kernel function.

Now we may consider the columns of a pairwise scoring
matrix as high-dimensional vectors. This means that there
are T' feature vectors with dimension equal to the train-
ing set size. The T' T-dimensional column vectors can be
used to train M SWVMs. Because of the high dimensional-
ity, linear SVM is a preferred choice, ie., g{¢, C@) =<
¢,¢Y) = The class of S can then be obtained by y(8) =
arg max_, f,.(9), where M is the number of classes.

In concluzion, the pairwise kKernel approach has been
very popular for this circumstance. Indeed, it has been suc-
cessful applied to genomic sequencing applications. ' One
such example will be discussed subsequently.

10. FEATURE SELECTION FOR SUBCELLULAR
LOCALIZATION

In the previous sections, we have constantly used an axis to

represent afeature, and therefore, feature selection/elimination

means axis selection/elimination. Note that under the pair-
wise kernel representation, we have as many features as vec-
tors. Then does a feature correspond to an axis or a data
point? The somewhat surprising answer is: Both. Because
the symmetrical kernel matrix exhibits a useful reflexive
property, which iz best illustrated by an example shown in
Figure 9. It can be advantageous to harness such a symme-
try property, which motivates the discussion of this section.

Bgee http:ifwawssiel . polyu. edu hid~mwmal/ BSIE PairProSWhi htm.
eFurthermore, pairwise sequence alignments can be effectively ex-
tended to derive multiple sequence alignments.

String space Yector space
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Figure 8: Vectorizing Sequences. Because strings are com-
posed of alphabets and have different lengths, they need to
be converted to vectors of the same dimension for classifi-
cation via kernel methods.

Sample | Sample Sample
A B c
Gene A |24 20 0.1
Gene B |2.0 21 0.1
Gene C |04 0.1 3.0
(a)
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Figure 9: Syimmetry (reflexive) property of pairwise data.
(a) Table showing the feature/zample data. (b) Features are
dizplayed as axes and samples as data vectors. (c¢) Features
are displayed as data vectors and samples as axes.

In [1], a method was proposed that makez use of the
symmetric property of pairwise scoring matrices to select
relevant features. The method considers the columms of
a pairwise scoring matrix a high-dimensional vectors and
uses the column vectors to train a linear SVM [13]. Becanse
of the symmetric property of the score matrix, the row vec-
tors with row indexes equal to the support vector indexes
are identical to the support vectors. Also, becanze the sup-
port vectors define the decision boundary and margins of
the SVM, they are critical for classification performance.
Therefore, the support vector indexes are good candidates
for selecting features for the column vectors, i.e., only the
rows corresponding to the support vectors are retained. The
column vectors with reduced dimension are then used to

14



train another SVM for classification. Because the indexes
of support vectors are used for selecting features, we re-
ferred this method to as vector-index-adaptive SVM, or sim-
ply VIA-SVM.

10.1. VIA-SVM Approach to Pairwise Scoring Kernels

To design a feature selection algorithm for pairwise scoring
vectors, we need to exploit the reflexive property of pair-
wise scoring matrices. The idea is based on the notion that
support vectors are important for classification and pairwise
scoring matrices are symmetric. (Namely, the elements of
the 2-th column of Z are identical to those in the i-th row.)
This suggests a possible hypothesis:

Hypothesis. The support vecior indexes are
good candidates for selecting features for the
column vectors, Le., only the rows correspond-
ing fo the support vectors are retained.

10.1.1. Why Consider Only Support Vectors?

In VIA-SVM [1],, the support vector indices are reused as
feature selection indices. The use of support vectors to se-
lect relevant features is intuitively appealing because they
are “critical” for establishing the decision boundary of SVM
classifiers. Because of the symmetrical property of kernel
matrices, the elements of the ¢-th column of Z are identical
to those in the i-th row. If the i-th column of Z happens
to be a support vector, the corresponding feature dimension
(the ¢-th row of Z) will also be critical for classification. On
the other hand, non-support vectors are irrelevant for classi-
fication, so as their corresponding feature dimensions.

The above interpretation of VIA-SVM is consistent with
how SVM-RFE selects features in that, in both methods,
indexes with large weight will be chosen first. Moreover,
they both prune the vectors/features corresponding to zero
«;. However, there is also an important difference, which
lies in the treatment of the vectors/features corresponding
to non-zero a;. More exactly, in VIA-SVM, different types
of support vectors receive different level of preference.

10.1.2. Differential Treatments of Support Vectors

Because the SVM-RFE takes the overall weight vector w
into account, it only considers the Lagrange multiplers «;
but not the slack variables £;. In contrast, the VIA-SVM
considers both «; (related to SV) and £; (indicates safety
margin or, sometimes, outlier). In this sense, the VIA-SVM
offers a more comprehensive coverage of all the critical fac-
tors made available by the SVM classifier.

It is important to recognize the fact that nor all SVs are
created equal. Therefore, in the VIA-SVM, support vec-
tors are differentially treated. In fact, they are divided into

Figure 10: Profile alignment score matrix Z =
{¢(¢@, ¢9)}T._ . The training vectors have been pre-
arranged such that the vectors belonging to the same class
are all grouped together, i.e., they are consecutively in-
dexed. The three vertical lines were artificially added to
divide the column vectors into four classes.

four levels of preferences as specified by the four regions in
Figure 11:

Level 1 Most-preferred: The SV is on the margin, i.e.,
0 < a; < Cand & = 0, where ' is the penalty
factor in SVM training.

Level 2 Preferred: The SV is in the fuzzy region and on
the correct side of the decision boundary, i.e., a; =
Cand0 < & < 1.

Level 3 Marginally-preferred: The SV is in the fuzzy re-
gion but on the wrong side of the decision bound-
ary,le, a; = Cand 1 < & < 2.

Level 4 Non-preferred: The SV is regarded as an outlier,
i.e., Qp = C and ft 2 2.

Thereason of ruling out the outlier SVs is self-explanatory.
The decision to have the marginal support vectors assigned
the highest preference level can be justified on the basis that
they offer relatively higher confidence than the fuzzy SVs.

Although it appears that two parameters («; and &;) are
required to define the preferences, &; alone can already pro-
vide sufficient information to determine the preference level
of an SV. In fact, the preference decreases with increasing
&. Moreexactly, & = 0,0 < & < 1,1 < & < 2, and
2 < & < oo define Level 1 to Level 4, respectively (cf.
Figure 11).
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Figure 11: The four levels of preferences for the support
vectors in VIA-SVM. Regions 1-4 correspond to preference
levels 1-4, respectively.

10.2. The VIA-SVM Algorithm

Feature selection in VIA-SVM is divided into two steps:

Step 1 Thescorematrix 7 = {¢ (¢, ¢} is used to train
M SVMs (Eq. 11) from which M sets of support
vector indexes S, are determined. This results in a

set of support vectors ¢ 7 = [¢(D, 0N . (@), pN)T

for each class, where 7 € &,,.

Step 2 For the m-th class, the indexes in &, are used to
select the feature dimensions (rows of Z) of the col-
umn vectors to obtain vectors ¢ ") of reduced di-
mension, where 7 = 1,...,7. These vectors are
then used to train another SVM for classification.
This process is repeated for all classes.

This two steps are iterated N times (5 in this work).
Specifically, the features selected at the n-th iteration are
used to train a new SVM in the (r + 1)-th iteration, whose
support vectors are subsequently used for determining the
feature set in the (n 4 2)-th iteration, and so on. The clas-
sification accuracy on the training data at each iteration is
recorded. At the end of the N-th iteration, the support vec-
tors of the SVM with the highest training accuracy are used
for selecting the final set of features. The column vectors
with reduced dimension are then used to train another SVM
for classification. Figure 12 shows the pseudo-code of VIA-
SVM.

10.2.1. Level-Dependent VIA-SVM Selection Strategies

For the actual implementation, it is worth noting that NOT
all SVs are created equal. Here, we propose four level-
dependent VIA-SVM selection strategies.

Strategy 1 (Level I only): Select the most-preferred SVs,
ie., select only the “pure” marginal SVs (a; <

Algorithm VIA-SVM
Input: X =[x, x; - x;Ly=[» » = wl
and C' e R, where x, e R™, y e {+1.-1}
Initidiizdtion: X' = X;
fork=1toN
do
A Train an SVM to obtain the indexes to the support vectors ini
[a, &, 1] = SVM_train(X’", ¥, O);

# Find the support veclor indexes j suchthat O <o, <Cand 0<% <2
Hwhere £, =1—o,(x,-W+b) and W= o¥x
jik} =find sv index(X’, v, C, o, b, 1);

A Select a feature subset based on the selected support vector indexes
X' =XG{k},

A Train another SVAM based on the selected features

[a, &, i] = SVM_ train(X", y, C);

/ Computting classification accuracy on training deata
a(k)=8SVM test(X', v, o, b, 1);
end
Output:  j{k'} where k' = arg max a(k)
L3

Figure 12: Pseudo code of VIA-SVM.

) while excluding those fuzzy and outlier SVs
(Odi = C)

Strategy 2 (Levels I and 2): Select the correctly classified
SVs only, i.e., select the “pure’” marginal SVs
(2 < C) and the correctly classified SVs that
are falling on the fuzzy region (o; = C and 0 <

£ < 1).

Strategy 3 (Levels 7-3): Remove the non-preferred, outlier
SVs, ie., only keep those SVs with &; < 2.

Strategy 4 (Levels I-4): Select ALL SVs, ie., select all
marginal and fuzzy SVs with 0 < a; < C.

Experiments on subcellular localization support that Strate-
gies 2 and 3 appear to produce the best performance.

10.2.2. Comparing VIA-SVM and SVM-RFE

Although both VIA-SVM and SVM-RFE are based on the
support vector machines, SVM-RFE uses the weight vector
w, whereas VIA-SVM uses the Langrange multipliers o;
and slack variables &;.

10.3. Combined With Other Selection Criteria

10.3.1. Redundance Removal for VIA-SVM

A common weakness of both VIA and RFE approaches is
that they do not explicitly consider the redundancy factor.
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This will result in wasteful selection because some of the
selected features can be either repetition of each other or
highly redundant. To minimize feature redundancy, we pro-
pose two pruning methods for VIA-SVM.

1. Euclidean distance: For those support vectors in Re-
gion 2 or 3, their pairwise Euclidean distances in the
reduced kernel space (defined by the selected feature
dimensions) are examined. If two features (with sim-
ilar &) are close to each other, one of them may be
removed without affecting the decision boundary.

2. K-means: Support vectors that have similar £; in Re-
gion 2 or 3 are clustered by K-means in the reduced
kernel space. The SVs closest to the centers are re-
tained and all remaining SVs in Regions 2 and 3 are
removed.

If the allowable number of features is very small, the redundance-

reduced feature set can be further pruned by a filter method
such as symmetric divergence. Results of cascading VIA-
SVM, redundance removal, and feature pruning will be shown
in Section 10.4.

Note that while SVM-RFE can also apply a post-processing

redundancy removal selection process (such as applying K-
means or double-checking the similarity score in the kernel
matrix), it does not enjoy the numeric information provided

by &;.

10.3.2. Fusion of Selection Criteria

It is natural to combine/consider both the filter and wrapper
methods in order to reach an optimal strategy. Specifically,
the features and/or criterion functions obtained from the fil-
ter and wrapper methods can be combined via a cascaded
fusion scheme shown in Figure 13.

It is desirable to seek an optimal compromise between
accuracy and cost. A possibility is via a comprehensive se-
lection procedures comprising two consecutive phases. Here,
we refer to these procedures as Overselect-and-Prune strat-
egy. The strategy has two steps.

Step 1. Over-selection Phase. This is a stage i which
only those obviously irrelevant features are quickly
weeded out. Preferably, it involves a quick and
coarse (suboptimal) evaluation, e.g., individual rank-
ing.

Step 2: Pruning Phase. The second stage may serve as a
fine tuning process. The goal is to remove redun-
dant features with minimum information loss. If
major redundancy exists between 4 and 5, then
one of the two may be pruned without incurring
much loss of information.

Criterion 1 Criterion 2

b

Figure 13: In the cascade fusion architecture, Criterion 1
is meant for coarse and fast over-selection and Criterion 2
represents pruning. The threshold for Criterion 1 can be
more relaxed (i.e., its value does not have to be very close to
the optimal number of features) to include more candidate
features for the second stage.

10.4. Experiments on Subeellular Localization

Two datasets were used for evaluating the performance of
VIA-SVM and for comparing it against other feature se-
lection algorithms. The first dataset is provided by Rein-
hardt and Hubbard [9]. It comprises 2427 amino acid se-
quences extracted from SWISSPROT 3.3, with each protein
annotated with one of the four subcellular locations: cyto-
plasm, extracellular, mitochondrial, and nuclear. The sec-
ond dataset was provided by Huang and Li [22]. It was
created by selecting all eukaryotic proteins with annotated
subcellular locations from SWISSPROT 41.0 and by setting
the identity cutoff to 50%. The dataset comprises 3572 pro-
teins (622 cytoplasm, 1188 nuclear, 424 mitochondria, 915
extracellular, 26 golgi apparatus, 225 chloroplast, 45 endo-
plasmic reticulum, 7 cytoskeleton, 29 vacuole, 47 peroxi-
some, and 44 lysosome). We used 5-fold cross validation
for performance evaluation so that every sequence in the
datasets will be tested.

10.4.1. FPerformance of VIA-SVM

Now let us discuss the case study results based on the four
selection strategies mentioned in Section 10.2.1. Because
Strategy 1 includes only very few SVs, the features are ex-
tremely under-selected. In contrast, because Strategy 4 in-
cludes all SVs regardless of their types, it is likely to cause
over selection, particularly when the penalty factor C is
small. In Strategy 2. all the SVs that are incorrectly mis-
classified will be excluded. However, this may lead to un-
der selection as there are some useful SVs falling on the
fuzzy regions. Strategy 3 is a compromise between the over
selection in Strategy 2 and the under selection in Strategy
4. More exactly, Strategy 3 excludes all the outlier SVs.
{The SVs lying beyond the margin of the opposite class are
deemed to be outliers.) In this strategy misclassified SVs
that lie within the margin of separation will still be selected,
leading to over selection, especially when the penalty factor
' is very small.

Figure 14 shows the performance of Strategies 1-4 when
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Figure 14: Prediction performance of different strategies of
VIA-SVM on (a) Reinhardt and Hubbard’s dataset and (b)
Huang and Li’s dataset when the penalty factor C varies
from 0.004 to 4,096. See Section 104 for details of the
strategies.

the penalty factor C' varies from 0.004 to 4,096. Note that
the number of selected features (feature dimension) is au-
tomatically determined by the SVMs. For each strategy, a
smaller penalty factor ¢’ will generally lead to a larger nmum-
ber of features, and vice versa for a larger C. Therefore,
markers on the right region of the figure correspond mainly
to small C”s. Notwithstanding the larger number of features
obtained by Strategy 4, the maximum accuracy attained by
it is still poorer than the other strategies. This confirms our
earlier hypothesis that including all SVs will lead to over
selection. Results also show that Strategy 1 will lead to
under selection when the penalty factor €' becomes large.
These case studies suggest that Strategies 2 and 3, which
exclude either the non-preferred SVs or both the marginally
preferred and non-preferred SVs (cf. Figure 11), seem to
be the least sensitive to the penalty factor, because they can
keep the number of features within a small range and main-
tain the accuracy at a constant level for a wide range of C'.

10.4.2. Comparison between VIA-SVM and SVM-RFE

We compared the proposed VIA-SVM (Strategy 2) with SVM-
RFE [15] in the subcellular localization benchmarks men-
tioned earlier.!” Note that SVM-REE does not make use of
the symmetric property of the pairwise scoring matrices in
the selection process, because it is primarily designed for
gene selections in microarray data where expression matri-
ces are neither square nor symmetric.

Figures 15 shows the performance of SVM-RFE (blue
—[- and VIA-SVM (red o). Evidently, VIA-SVM is supe-
rior to SVM-REE in two aspects: (1) It outperforms SVM-
REFE at almost all feature dimension, particularly at low fea-
ture dimensions and (2) it automatically bounds the number
of selected features within a small range. A drawback of
SVM-RFE is that it requires a cutoff point for stopping the
selection. On the other hand, VIA-SVM is insensitive to the
penalty factor in SVM training and can avoid the need to set
a cutoff point for stopping the feature selection process.

10.4.3. Fusion of VIA-SVM and SD

Given a particular axis, which corresponds to one feature,
two factors can be considered: VIA-SVM parameters (C
and &;) and symmetric divergence of feature ¢ (SD;). We
adopt the Over-Select-and-Prune Cascaded Fusion Archi-
tecture, as proposed in Section 10.3.2, to combine VIA-
SVM and SD. Based on this cascade fusion strategy, the
selection process is divided into two stages.

Stage 1: Use VIA-SVM (Strategy 2 or 3) to select all-but-
outlier $Vs, i.e., only keep those with £; < 2.

Stage 2: Use SD to sort the features found in Stage 1 and
keep the most relevant = %.

In this work, we set = to 70. Figures 15 shows the fu-
sion results (blue x), which suggest that fusion can produce
more compact feature subsets without significant reduction
in prediction accuracy. We also note that although VIA-
SVM is inferior to SVM-RFE for large feature-set size, the
combination of SD and VIA-SVM performs better at small
feature-set size.

10.4.4. Redundance Removal

The Euclidean-distance (eDist) and K-means based meth-
ods mentioned in Section 10.3.1 were applied to reduce the
redundance among the features selected by VIA-SVM. For
the former, the constant n was set to 0.3; for the latter, the
number of centers in K-means was set to 300 for Huang and
Li’s dataset. The setting of these values was based on the

"Because the performance of SVM-RFE, R-SVM, and symmetric di-
vergence are comparable in the two benchmarks, we only report the results
of SYVM-REFE for clarity of presentation.
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observation from Figure 14 that the accuracy drops rapidly
when the number of features is smaller than these values.
The results (green + and pink ¢) shown in Figures 15 sug-
gest that both methods can reduce the feature size without
scarifying accuracy. This once again demonstrates the merit
of using the slack variables £; in selecting features.

To further reduce the feature size, we applied SD to
pruned the features after redundance removal. Figures 15
(black <7 and red %) shows that the resulting feature sets
achieve a significant higher accuracy when compared with
SVM-REFE.

We have also compared Strategy 2 and Strategy 3 in
terms of the mean accuracy and mean feature dimension ob-
tained by VIA-SVM and VIA-SVM cascaded with various
pruning methods. Based on the Table 5, three observations
can be made:

1. For each pruning method, there is no significant dif-
ference between the accuracy obtained by Strategies
2 and 3;

2. Strategy 2 generally leads to a smaller number of fea-
tures than Strategy 3 with almost the same perfor-
mance statistically;

3. SVM-RFE not only gives lower average accuracies
but also leads to a larger variation in both accuracy
and feature dimension;

These observations suggest that Strategy 2 is a winner be-
cause it can keep the number of features to a minimum with-
out scarifying accuracy. Strategy 2 is also a better choice for
applications where feature dimension (and hence recogni-
tion time) should be kept to a minimum. On the other hand,
for applications where accuracy is of primary importance,
Strategy 3 is a better option.

10.4.5. Range of Desirable Feature Dimension

In most pattern recognition problems, a smaller feature size
can result in faster recognition speed, but at the expense
of lower classification accuracy, and vice versa. Usually,
it should be possible set a range of desirable feature di-
mension for a particular problem. For example. in bioin-
formatic applications where accuracy is far more important
than speed, we may prefer using the upper limit that gives
high accuracy but not to the point that causes the curse of
dimensionality. Based on the performance observed, the
desirable range of feature dimension is highlighted by the
dashed rectangles in Figures 15. Evidently, the redundance
removal and the cascade fusion of VIA-SVM and SD enable
us to find the feature sizes falling on the desirable range.
In particular, when recognition speed is a concern, we can
over-select features by using VIA-SVM (Strategies 2 or 3)
and then remove feature redundance by using K-means, and
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Figure 15: Prediction performance of SVM-RFE, VIA-
SVM, and VIA-SVM cascaded with various pruning meth-
ods on Huang and Li’s dataset. (a) The VIA-SVM uses
Strategy 2 for feature selection. (b) Strategy 3 was used.
{¢) The means and standard derivations (in parentheses) of
the classification accuracies and feature dimensions for 21
penalty factors ranging from 0.004 to 4096; for SSVM-RFE
in (¢), the means and standard derivations are based on 9
points in (a) and (b) whose feature dimensions range from
114 to 492. Pruning was applied according to the order indi-
cated in the legend; for example, “VIA-SVM + eDist + SD’
means that the features selected by VIA-SVM was pruned
by Euclidean distance-based method followed by the sym-
metric divergence-based method.

finally, we can further prune the features by using SD (*VIA-
SVM + Kmean + SD). On the other hand, if accuracy is
more important, we may skip the final pruning stage, i.e.,
using “VIA-SVM + Kmean’, or do not apply pruning at all.
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| Accuracy (%) | Feature Dimension

Method | Strategy 2 | Strategy3 | Strategy2 [ Strategy3 |
VIASVM 7343 (0.27) | 73.23 (0.38) | 443 (35.77) | 348 (17.22)
VIA-SVM+SD 7312 (0.41) | 72.66 (0.51) | 312(35.01) | 244 (12.07)
VIA-SVM+eDist 73.56 (0.29) | 73.23 (0.42) | 408 (22.69) | 332 (27.77)
VTA SVM+Kmean 73.26 (0.48) | 73.09 (0.47) | 327 (61.54) | 296 (63.29)
VIASVM+eDisteSD || 73.63 (0.27) | 73.11 (0.47) | 286 (15.83) | 232(19.35)
VIA-SVM+EmeansSD || 72.93 (0.71) | 72.73 (0.78) | 229(43.39) | 207 (45.76)
SVMRFE 7190 (1.45) 264 (129.10)

Table 5: This table summarize the performance (accuracy
versus feature dimension) corresponds to Figures 15.

11. CONCLUSION

An effective data mining system lies in the representation of
pattern vectors. The curse of dimensionality, has tradition-
ally been a serious concern in many genomic applications.
That is why this paper places its emphasis on feature se-
lection. Unfortunately, the page limit does not allow a full
or more comprehensive treatment to do justice to such an
emerging field. In addition, most research issues remain
very much open in terms of novel and efficient algorithms
for feature selection. In addition, a lot more investigation
will be needed in order to more convincingly demonstrate
how the machine learning tools may be applied to real ge-
nomic application, including (sequence-based) genomic se-
quencing and (matrix-based) gene expression profile analy-
sis.
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