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Abstract - Identification and annotation of all the functional 
elements in the genome, including genes and regulatory 
sequences, is a fundamental challenge in genomics and 
computational biology. Since regulatory elements are often 
short and variable, their identification and discovery using 
computational algorithms is difficult. However, significant 
advances have been made in the computational methods for 
modeling and detection of DNA regulatory elements. This 
paper proposes a novel use of techniques and principles from 
communications engineering, coding and information theory 
for modeling, identification and analysis of genomic 
regulatory elements and biological sequences. The methods 
proposed are not only able to identify regulatory elements 
(REs) at their exact locations, but also “interestingly” can 
distinguish coding from no coding regions. Therefore, the 
proposed methods can be utilized to identify genes in the 
mRNA sequence.  

Keywords: Gene expression analysis, translation, ribosome, 
coding theory, communications theory. 

1 Introduction 
  Communications and information theory has proved to 
provide powerful tools for the analysis of genomic regulatory 
elements and biological sequences [1]-[5]. An up-to-date 
summary of current research can be found in [6]. The genetic 
information of an organism is stored in the DNA, which can 
be seen as a digital signal of the quaternary alphabet of 
nucleotides },,,{= TGCAX . An important field of interest is 
gene expression, the process during which this information 
stored in the DNA is transformed into proteins. Gene 
expression codes for the expression of specific proteins that 
carry out and regulate such processes. Gene expression takes 
place in two steps: transcription and translation (Figure 1).  

 
 
 

Figure 1: The process of protein synthesis (gene expression) 
 

 This paper is organized as follows. Section 2 describes 
our previous model for the process of translation in gene 
expression being compared to the the work done in [4]. 
Section 3 presents four new other models for the process of 

translation with simulation results presented in section 4. 
Finally, conclusions are drawn in Section 4. 

2 Previous Model 
 The process of translation in prokaryotes is triggered by 
detecting an RE known as the Shine-Dalgarno (SD) sequence. 
Physically, this detection works by homology mediated 
binding of the RE to the last 13 bases of the 16S rRNA in the 
ribosome [8]. In our work [1] and [2], we have modified this 
detection/recognition system done in [4] by designing a one-
dimensional variable-length codebook and a metric. The 
codebook uses a variable codeword length N between 2 and 
13 using the Watson-Crick complement of the last 13 bases of 
the 16S rRNA molecule. Hence, we obtain (13-N+1) 
codewords; ic    = [s1, s2, …, si+N-1]; i ∈ [1, 13-N+1] where 
s = [s1, s2, …, s13] = [UAAGGAGGUGAUC] stands for the 
complemented sequence of the last 13 bases. A sliding 
window of size N applies to the received noisy mRNA 
sequence to select subsequences of length N and match them 
with the codewords in the codebook (see Table 1). The 
codeword that results in a minimum weighted free energy 
exponential metric between doublets (pair of bases) is 
selected as the correct codeword and the metric value is 
saved. Biologically, the ribosome achieves this by means of 
the complementary principle. The energies involved in the 
rRNA-mRNA interaction tell the ribosome when a signal is 
detected and, thus, when the start of the process of translation 
should take place. In our model, a modified version of the 
method of free energy doublets presented in [7] is adopted to 
calculate the energy function (see equation 1).  This function 
represents a free energy distance metric in kcal/mol instead of 
minimum distance (see Tables 2) [4]. Our algorithm assigns 
weights to the doublets such that the total energy of the 
codeword increases with a match and decreases with a 
mismatch. Therefore, the total energy gets more emphasized 
or de-emphasized when consecutive matches or mismatches 
occur. The energy function has the following form: 
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where kδ means a match ( 1=kδ ) or a mismatch ( 0=kδ ) and 

kw is the weight applied to the doublet in the thk position. 
The weights are given by: 
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where σ  and σ  are the numbers of consecutive matches or 
mismatches and ρ  is an offset variable updated as follows: 
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where a is a constant that will control the exponential growth 
of the weighting function. The offset variable ρ  updated at 
each step according to equation (3), is introduced for the 
purpose of keeping track of the growing trend that happens 
when consecutive number of matches occurs followed by a 
mismatch. When a mismatch occurs we increment the number 
of mismatches that is initialized to zero by one, reset the 
number of matches back to zero, calculate the current 
weighting factor, and finally reevaluate the offset variable to 
be used in the next alignment. Without the use of this offset 
variable, we will have several peaks when we came into a 
good match of the codeword in that particular alignment. 
 

Table 1. 16SrRNA Codebook 
Cl Codeword C5 GAGGU 
C1 UAAGG C6 AGGUG 
C2 AAGGA C7 GGUGA 
C3 AGGAG C8 GUGAU 
C4 GGAGG C9 UGAUC 

 
Table 2. Energy Doublets [7]  

Pairs of bases Energy 
AA  -0.9 GA  -2.3 
AU  -0.9 GU  -2.1 
UA  -1.1 CA  -1.8 
UU  -0.9 CU  -1.7 
AG  -2.3 GG  -2.9 
AC  -1.8 GC -3.4 
UG  -2.1 CG  -3.4 
UC  -1.7 CC  -2.9 

 
 For larger values of a, the exponential will grow faster 
as the number of consecutive matches increases (hence 
increasing the likelihood that the right sequence is enhanced) 
making the algorithm more sensible to the correlation in the 
sequence. Not only does this algorithm allow controlling the 
resolution of detection (by the choice of the parameter a) but 
also allows identification of the exact position of the best 
match of the Shine-Dalgarno signal in the genes under study. 

 For the analysis, sequences of the complete genome of 
the prokaryotic bacteria E. coli strain MG1655 and O157:H7 
strains were obtained from the National Center for 
Biotechnology Information. Our proposed exponentially 

weighting algorithm was not only able to detect the 
translational signals (Shine-Dalgarno, start codon, and stop 
codon) but also resulted in a much better resolution than the 
results obtained when using the codebook alone (without 
weighting). Figure 2 shows average results for the detection 
of the SD, start and stop codons being compared to previous 
work [4]. It can be seen that the proposed algorithm is able to 
identify the Shine-Dalgarno (peak at position 90) and the start 
codon (peak at position 101) and the stop codon (peak at 
position 398). Moreover, these results support the arguments 
for the importance of the 16S rRNA structure in the 
translation process. Different mutations were tested using our 
algorithm and the results obtained further certified the 
correctness and the biological relevance of the model. 
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Figure 2: Detection of translation signals 

3 New Models 
 The previous model discussed in introduction is based 
on coding theory (codebook). In this paper, four new 
different models for the detection process that the ribosome 
uses to identify and locate translation signals (Shine-
Dalgarno, initiation signal, and termination signal) are 
developed. These models are based on basic concepts in 
communications and information theory as correlation and 
Euclidean distance (model I), matched filter (model II), 
correlation based exponential metric (model III), and free 
energy doublets (model IV). The four models are described 
below.  

Model I. Euclidean Distance Based Algorithm 

 In this method, a Euclidean distance measure can be 
used to detect a given binding sequence in the mRNA 
sequence. This measure is calculated at each single base in 
the mRNA sequence as follows:   

1) Map both mRNA sequence and the binding sequence 
under study to their equivalent numerical quaternary 
representations using (A = 0, C = 1, G = 2, and U = 
3). 



h(n) = y(-n) 
y(n): binding 

sequence 

x(n) 
DNA 

n = N 
z(n) z(N) 

2) Slide the binding sequence along the mRNA 
sequence and find the Euclidean distance at each 
alignment position. 

3) Sum the resulting Euclidean distance vector and save 
the result as a function of base position. 

4) Plot the resulting vector in step 3 and detect minimal 
points.  

 
 A minimal point (dip) of amplitude of zero in the 
resulting plot corresponds to a total match of the binding 
sequence. The next minimal point is a partial match of the 
binding sequence. Therefore, this method is able to detect the 
binding sequences in their exact location and accounts for 
mismatches as well. 

Model II. Cross Correlation (Matched Filter) 

 In telecommunication, a matched filter is obtained by 
correlating a known signal, or template, with an unknown 
signal to detect the presence of the template in the unknown 
signal. This is equivalent to convolving the unknown signal 
with a time-reversed version of the template. The matched 
filter is the optimal linear filter for maximizing the signal to 
noise ratio (SNR) in the presence of additive stochastic noise. 
Model II is based on using a matched filter of an impulse 
response equal to h(n)=y(-n) and an input of x(n) (see Figure 
3) where y(n) is the binding sequence and x(n) is the mRNA 
sequence.  

 
 
 

 
 

Figure 3: Matched Filter 

1) Map both the mRNA sequence x(n),  and the 
binding sequence y(n),  under study to their 
equivalent binary representation using (A = 00, 
C = 01, G = 10, and T = 11). 

2) Convert each zero in the resulting binary 
sequences to (-1) to get a better correlation form. 

3) Correlate both sequences using  
*z(n) = x(n) y(n) = x(n) y (-n) ⊗ ∗    

       
n=-

= x(k)y(n+k)
∞

∞
∑                                      (4) 

where ( ⊗ ) corresponds to cross correlation and 
( ∗ ) corresponds to convolution. Correlation is 
equivalent to convolution of the sequence x(n)  
with an inverted version of the sequence y(n). 
This can be done by first flipping the sequence 
y(n) and then convolving it with the sequence 
x(n). 

4) Plot the cross correlation function and detect the 
maximal points. 

5) Convert the binding sequence detected positions 
( a maximal point in the plot) to their 
corresponding locations in the original mRNA 
sequence using:  

( )mRNA plot= DP  -2 BSL 1 2DP +⎡ ⎤⎢ ⎥                      (5) 
where DPmRNA is the detected position in the 
mRNA sequence, DPplot is the detected position 
in the plot; BSL is binding sequence length, and 

X⎡ ⎤⎢ ⎥  rounds the value X to the nearest integer 
larger than X. 

 
Model III. Exponential Detection Metric 

 
 In this model, a binding sequence is detected by 
aligning it with the mRNA sequence. An exponential metric 
related to the total number of matches at each alignment is 
evaluated as follows: 

1) Slide the binding sequence under study along the 
mRNA sequence one base at a time. 

2) At the ith alignment, calculate an exponential 
weighting function ( )(iW ) using the equation: 

∑
1=

)(=)(
N

n

nwiW ,                                                  (6) 

where )(nw is the weight applied to the base in the 
nth  position and N is the length of the binding 
sequence under study. The weights are given by: 
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where a is an input parameter that controls the 
exponential growth of the weighting function W, and 
σ  is the number of matches at each alignment. . 

3) Repeat step 2 for all alignments along the mRNA 
sequence to get the weighting vector W : 

)]1+(...,),2(),1([= NLwwwW ,                         (8) 
where L is the length of the mRNA sequence.  

4) Plot the weighting vector W , and detect peaks. 
 

 This model considers the total number of matches at 
each alignment rather than the consecutive number of 
matches and mismatches as in the codebook model discussed 
in 3.1.1. 

Model IV. Free Energy Metric 

 In this model, we use the free energy table (see Table 
III) to calculate a free energy distance metric in kcal/mol.  
This metric is calculated at each alignment between the 
mRNA sequence and the binding sequence under study as 
follows: 



1) Align the binding sequence with the mRNA sequence 
and shift it to the right one base at a time. 

2) At the ith alignment,  calculate the free energy metric 
using the equation: 
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where N is the length of the binding sequence. y  
denotes the binding sequence vector and is given by 

= 1 2[ , ,..., ]Ny y y y . Let x  denote the mRNA 
sequence vector where 1 2[ , ,..., ]Lx x x x= . 
 

1( )n nE y y + is the energy dissipated on binding with 

the nucleotide doublets 1n ny y + and is calculated from 
Table III. ( )nδ  is given by: 
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3) Repeat step 2 for i=1,2,…,L-N+1, where L is the 
length of the mRNA sequence vector, 

4) Plot the free energy vector E and detect minimal 
points. 

 
 To show how the four previous models behave, we 

arbitrarily selected a 71-bases-long mRNA sequence as a test 
sequence. Then, we chose an 11-bases-long sequence starting 
at position 13 to be a hypothetical binding sequence. This 
binding sequence was also inserted at position 53 with two 
bases being changed to get a partial match of the original 
sequence. The four previous models were applied to detect 
these binding sequences. Figures 4, 5, 6, and 7 show that 
these methods are accurately detecting the binding sequence 
as expected. A total match occurs at position 13 (longer 
peak/dip), and a partial match occurs at position 53 (shorter 
peak/ dip).  
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Figure 4: Model I: Euclidean Distance Metric 

 
Figure 5 shows that the binding sequence has been detected at 
positions 46 and 126. According to equation 5, these positions 
correspond to positions 13 ( ( )46 - 22 1 2+⎡ ⎤⎢ ⎥ =13) and 53 

( ( )126 - 22 1 2+⎡ ⎤⎢ ⎥ =53) in the original mRNA sequence, 
respectively. 
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Figure 5: Model II: Cross Correlation (Matched Filter)  
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Figure 6: Model III: Exponential Detection 
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Figure 7: Model IV: Free Energy Metric 

 
4 Simulation Results 
For the analysis, sequences of the complete genome of the 
prokaryotic bacteria E. coli strain MG1655 and o157:H7 were 
used. Applying these methods to detect the last 13 bases of 
the 16S rRNA molecule in the given mRNA sequence allows 
detecting the translational signals at their exact corresponding 
locations (as previous methods mentioned before, Figure 2). 
Moreover, these methods “interestingly” allow for 
distinguishing coding from noncoding regions. This new 
finding suggests that the last 13 bases of 16S rRNA molecule 
has a higher correlation with coding regions. Simulation 
results for the four methods are shown in Figure 8, 9, 10, and 
11. From these figures, coding and noncoding regions can be 
apparently identified. This interesting result will be further 
analyzed and explored using other binding sequences in 
future work. Figures 8-11 show that all the proposed methods 
are obviously able to identify coding from noncoding regions. 
These interesting findings suggest that the proposed methods, 



which were originally designed for regulatory sequence 
identification, can be utilized to identify genes (coding 
regions) in the mRNA sequence. 
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Figure 8: Model I: Euclidean Distance Metric  
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Figure 9: Model II: Cross Correlation (Matched Filter) 
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Figure 10: Model III: Exponential Detection 
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Figure 11: Model IV: Free Energy Metric 

5 Conclusion 
The increase in genetic data during the last years has 
prompted the efforts to use advanced techniques for their 
interpretation. This paper proposes a novel application of 
ideas and techniques from information theory, 
communications, and coding theory to model and analyze 
gene expression and gene and regulatory sequence 
identification. Four new different methods for regulatory 
elements identification are developed and investigated. 
Simulation results certify the correctness and accuracy of 
these methods in detecting regulatory sequences. Moreover, 
as these methods are “interestingly” capable of distinguishing 
coding from noncoding regions, they can be utilized to 
identify genes in the given mRNA sequence. 
 
6 References 
[1] Mohammad Al Bataineh, Maria Alonso, Siyun Wang, 
Guillermo Atkin and Wei Zhang, “Ribosome Binding Model 
Using a Codebook and Exponential Metric,” IEEE EIT 2007 
Proceedings, Chicago, IL, USA, May 17 – 20, 2007.  
[2] Mohammad Al Bataineh, Maria Alonso, Siyun Wang, 
Guillermo Atkin and Wei Zhang “An Optimized Ribosome 
Binding Model Using Communication Theory Concepts,”; In: 
Proceedings of 2007 International Conference for 
Bioinformatics and Computational Biology, Las Vegas, June 
25 – 27, 2007. 
[3] E. E. May, M. A. Vouk, D. L. Blitzer, and D. I. 
Rosnick, “Coding theory based models for protein translation 
initiation in prokaryotic organisms,” BioSystems, vol. 76, pp. 
249–260, August-October 2004. 
[4] Z. Dawy, F. Gonzalez, J. Hagenauer, and J. C. Mueller, 
“Modeling and analysis of gene expression mechanisms: a 
communication theory approach,” proceedings of the IEEE 
International Conference on Communications (ICC), May 
2005.  
[5] Z. Dawy, B. Goebel, J. Hagenauer, et al., “Gene 
mapping and marker clustering using Shannon’s mutual 
information,” IEEE Transactions on Computational Biology 
and Bioinformatics, vol. 3, no. 1, pp. 47–56, January-March 
2006. 
[6] “DNA as Digital Data - Communication Theory and 
Molecular Biology,” IEEE Engineering in Medicine and 
Biology, vol. 25, no. 1, January/February 2006. 
[7] E. May, M. Vouk, D. Bitzer, and D. Rosnick. An 
errorcorrecting code framework for genetic sequence 
analysis. Journal of the Franklin Institute, 34:89–109, 
January-March 2004. 
[8] A. Hui and H. D. Boer, “Specialized ribosome system: 
preferential translation of a single mRNA species by a 
subpopulation of mutated ribosomes in Escherichia coli,” 
Proc. Natl. Acad. Sci., vol. 84, pp. 4762– 4766, 1987. 
[9] S. Lin and D. J. Costello, Jr., Error Control Coding. 2nd 
Edition: Prentice-Hall, 2004. 
[10] J. G. Proakis, Digital Communications, 5th ed. New 
York: McGraw- Hill, 2007.  


