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Abstract—This paper describes a new approach for locating 
signals, such as promoter sequences, in nucleic acid sequences. 
Transcription Factor (TF) binding to its DNA target site is a 
fundamental regulatory interaction. The most common model 
used to represent TF binding specificities is a position weight 
matrix (PWM) [1], which assumes independence between binding 
positions. However, in many cases, this simplifying assumption 
does not hold. In this paper, we present a Chi-Square ( 2χ ) 
distance model [2], which is based on the distance between the 
profiles of component vectors. It is a novel probabilistic method 
for modeling TF-DNA interactions. Our approach uses 

2χ distances to represent TF binding specificities. Simulation 
results show that the proposed approach identifies TF binding 
sites significantly better than the PWM model method. 

Index Terms—promoter, Transcription Factor, Chi-square 
distance 

I.  INTRODUCTION 
The most common representation for sequence motifs is the 

position weight matrix (PWM), which specifies a separate 
probability distribution over nucleotides at each position of the 
Transcription Factor Binding Sites (TFBS). The goal of 
computational approaches is then to identify the PWM 
associated with each TF and use it to identify TFBS. A weight 
matrix is a two dimensional array of values that represent the 
score for finding each of the possible bases at each position in 
the TF for which we are looking. For DNA sequences the 
weight matrix will have a length equal to the length of the TF 
and depth of four (one row for each of A, C, G and T). 
Generally, we generate the frequency table for the TF and 
calculate the natural logarithms of the frequencies to get the 
position weight matrix. 

Despite its successes, the PWM representation makes the 
strong assumption that the binding specificities of the TFs are 
position-independent. That is, the PWM assumes that for any 
given TF and TFBS, the contribution of a nucleotide at one 
position of the site to the overall binding affinity of the TF to 

the site does not depend on the nucleotides that appear in other 
positions of the site. In theory, it is easy to see where this 
assumption fails. For example, the TFBS data contains only 
‘‘CG’’ or ‘‘GC’’ in the center positions. Although the PWM 
learned from this data assigns high probability to these 
nucleotide pairs, it also undesirably (and unavoidably) assigns 
high probability to ‘‘CC’’ and ‘‘GG’’ in the center positions. 
However, if instead of the PWM representation, we allow 
ourselves to assign probabilities to multiple nucleotides at 
multiple positions; we could use the same number of 
parameters to specify the desired TF binding specificities. This 
observation leads to the feature motif models (FMM) [3] 
approach. Even though the FMM approach is better than the 
PWM, it involves the evaluation of complicated log likelihood 
function and objective function. Then, it significantly increases 
the computation complexity. 

In this paper, a novel identification approach is proposed. It 
uses a statistical model based on the 2χ  distance. This approach 
does not require large computation complexity, and simulation 
results show that it can effectively identify the location of 
TFBS and other related signal sequences, such as promoters. 
This paper is organized as follows. In section II, the system 
model and underlying theories are described; in section III, the 
simulation results are analyzed; section IV presents the 
conclusion of the proposed approach. 

II. SYSTEM MODEL 
The system model is described in Figure 1. The output of 

the shifting register array is a vector Y(n) with L elements. The 
n is the location index of this vector on the nucleotide input 
sequence X(n). The 2χ  distance is originated from 
correspondence analysis. It is a distance between the statistical 
profiles of two different sequences or sets. A vector is called a 
profile when it is composed of numbers greater or equal to zero 
whose sum is equal to one (such a vector is sometimes called a 
probabilistic vector). The 2χ distance is defined for the rows 
(or the columns after transposition of the data table) of a 



         

Table 1. The original conserved and input sequences 
 

Sequence name Nucleotide sequences 
Conserved 1 TCAATAGCAGTGTGAAATAACATAATTGAGCAACTGAA 
Conserved 2 AGCGCACACTTGTGAATTATCTCAATAGCAGTGTGAAA 
Conserved 3 TCAAGAAATAAACCAAAAATCGTAATCGAAAGATAAAA 
Conserved 4 GTAATCGAAAGATAAAAATCTGTAATTGTTTTCCCCTG 

Input Sequence GTTTCCTGATGAACATTTTTCCAGCAATTACACCTCTG 

 
Table 2.  Contingency table for the computation of the 2χ distance  

(a) the raw data and column statistics 
 

Raw data 
 A G C T N v′ ⋅  (N N ) r′− ⋅  

Conserved 1 3 0 3 2 8 30 
Conserved 2 3 0 2 4 9 29 
Conserved 3 3 0 2 1 6 32 
Conserved 4 3 3 4 4 14 24 

Input Sequence 9 5 10 14 38 0 
TNCΣ  21 8 21 25   

TC  0.28 0.107 0.28 0.333   
TW  7.238 19 7.238 6.08   

 
(b) The statistics of row profiles 

 
Row profiles 

 A G C T ir  
Conserved 1 0.375 0 0.375 0.25 0.261 
Conserved 2 0.333 0 0.222 0.444 0.252 
Conserved 3 0.5 0 0.333 0.167 0.278 
Conserved 4 0.214 0.214 0.286 0.286 0.209 

Input Sequence 0.237 0.132 0.263 0.368  
 

contingency table. An example of the procedure to evaluate the 
2χ distance between the input sequence and the Center Of 

Gravity (COG) for the family composed of the conserved 
sequences in Table 1, are shown in Table 2. 

It should be noted that the statistics of the row profiles for 
those conserved sequences are only taking into account the 
matched bases between the conserved sequences and input 
sequence [3] [4]. For example, for conserved sequence 3, it has 
6 nucleotides coinciding with the input sequence, thus, only 6 
of its bases would be used to evaluate its statistics and the total 
number of matches is 6. 

The row labeled TNCΣ gives the total of each column. This 
is the total number of times this specific nucleotide was found 
in the matched bases. The centroid row TC  gives the 
proportion of each kind of nucleotide in the conserved 
sequences. The weight of each column TW is the inverse of the 
centroid. The column labeled N v′ ⋅ gives the total number of 
matches used to evaluate the statistics by each sequence. The 
mass of each row, denoted by ir , is the ratio of mismatches of 
this sequence to the total number of mismatches for all of the 
conserved sequences. In Table 2(b), the total number of 
matches is N 75′ = . 

The first step of the computation of the distance is to 
transform the raw data for row statistics into row profiles which 
is obtained by dividing each row by its total. There are I rows 

and J columns in a contingency table. The COG of the rows, 
denoted C, is computed by transforming the total of the 
columns into a row profile. For the 2χ  distance, the W matrix 
is diagonal which is equivalent to assigning a weight to each 
column. This weight is equal to the inverse of the relative 
frequency of the column; it can be expressed formally by 

1W (diag{C})−= . 

With this weight matrix, variables which are used often 
contribute less to the distance between rows than variables 
which are used rarely. For example, from Table 2 (a), we find 
that the weight matrix is equal to 
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 (1) 

Assume that 2d (i) denotes the 2χ  distance between the 
conserved sequence i and the input sequence, then the 2χ  
distance between the reserved sequence i=1 and the input 
sequence is equal to 

2 2 2

2 2

d (1) 7.238 (0.237 0.375) 19 (0.132 0)
7.238 (0.263 0.375) 6.08 (0.368 0.25) 0.317

= ⋅ − + ⋅ − +

⋅ − + ⋅ − =
          (2) 

In the same way, we have 2d (2) 0.219= , 2d (3) 0.549= , 
2d (4) 0.088= . 

If M is the number of conserved sequences; L is the length 
of conserved nucleotide sequence; the grand total of the 
contingency table is N, which is equal to (M 1) L+ ⋅ the total 
number of nucleotides in all of the conserved and input 
sequences, the distance from row i to the COG of the family is 
denoted by 2

gd (i) , and the distance from row i to row i’ is 
denoted by 2d (i, i ') , we obtain the following equality: 

M
2 2

i g i i '
i 1 i i '

r d (i) r r d (i, i ')
= >

=∑ ∑                           (3) 

Where i, i′ ∈{index of conserved and input sequences}. ir  
and ir ′ are the mass of each row, and it is the component of 
mass vector r, which can be obtained by dividing the vector 
(N N ) r′− ×  by the scalar( N N′− ). 

An approximate estimation of the 2χ  distance between the 
input sequence and the COG for the conserved sequence family 
can be derived from (3) as 

M M
2 2 2
g i

i 1 i 1

1d r d (i) d (i)
M= =

≅ ≅∑ ∑                        (4) 

Where i∈{index of conserved sequences}. Since the index 
for input sequence can be fixed to M+1, this distance is 
independent of the index scheme, and can be denoted as 2

gd  
instead of 2

gd (M 1)+ . To further reflect the match degree 



         

between input sequence and the conserved sequences family, 
which is related to N′ , 2

gd should be normalized by a factor: 
(M 1) L NA N N

+ ⋅= =′ ′ . 

Then, the normalized 2χ  distance from the input sequence 
to the COG of the conserved sequences can be defined by 

  

M
2 2
g i

i 1
M M

2 2
i

i 1 i 1

D(n) A d (n) A r d (i)

(M 1) L Nr d (i) d (i)
N M N

=

= =

= ⋅ ≅

+ ⋅
= ≅

′ ′⋅

∑

∑ ∑
              (5) 

where n denotes the index of the location on the input 
nucleotide sequence. Therefore, for the initial location of the 
input sequence (n = 0) in Table 2, we have 

4
2

i
i 1

5 38 190D(0) r d (i) (0.261 0.317
75 75

0.252 0.219 0.278 0.549 0.209 0.088) 0.783
=

⋅
= = ⋅

+ ⋅ + ⋅ + ⋅ =

∑   (6) 

To define the dynamic range of the 2χ  distance D(n) for 
the input nucleotide sequence, we must evaluate lower and 
upper thresholds based on the conserved sequences. The upper 
threshold can be obtained with 

{ }upper jTh max D (0)= , j∈{index of conserved sequences} 

      The lower threshold is 

{ }lower jTh min D (0)= , j∈{index of conserved sequences} 

For the conserved sequences given in Table 1, we find the 
2χ  distance ( iD (0); i 1, 2,3, 4= ) for each of the four conserved 

sequences to the COG 

1D (0) 0.191= , 2D (0) 0.62= , 3D (0) 0.174= , 4D (0) 0.66=  

So, the upper threshold value is 
{ }upper jTh max D (0), j 1, 2,3,4 0.66= = = ; The lower threshold 

value is { }lower jTh min D (0), j 1, 2,3, 4 0.174= = = . The output 
of the lower threshold function can be defined by 

lower upper

upper

D(n), Th D(n) Th
T(n)

Th , otherwise

≤ ≤⎧⎪= ⎨
⎪⎩

                (7) 

The metric function is defined as 

upperTh
M(n) 1

T(n)
= −                       (8) 

The identification of TFBS is based on the peak detection 
on the value of M(n). 

III. SIMULATION 
The conserved sequences table used to locate promoters in 

E. coli sequences is taken from the compilation of such 
sequences produced by Hawley and McClure [5]. E. coli 

promoters have been shown to contain 2 regions of conserved 
sequence located about 10 and 35 bases upstream of the 
transcription start-site. Their consensuses are TATAAT and 
TTGACA with an allowed spacing of 15 to 21 bases between. 
The spacing with maximum probability is 17 bases and all but 
12 of the 112 sequences in the Hawley and McClure collection 
could be aligned with a separation of 17 + or -l bases. The 
spacing between the -10 region and the start-site is usually 6 or 
7 bases but varies between 4 and 8 bases. Hawley and McClure 
also show a conserved section to exist around the +1 region. 
The range definitions for the three regions (the -35, -10 and +1 
regions) are in [1]. The input nucleotide sequence (genome 
sequence) used in simulation can be found in [6]. 

First, we use -10 region of the conserved sequence to 
identify the -10 promoter, the result is shown in Figure 2. The 
red region marks the real location of the -10 promoter, the 
center of red region is at 101. It can be observed that the 
highest peak locates at 125, which is 24 bases from the center 
of red region; therefore, the predicted location of the -10 
promoter should be 115 and the identification error is 14 bases. 
In -35 promoter identification, we use -35 region of the 
conserved sequences to form the conserved sequence table, the 
result is described in the Figure 3. 

Similarly, the red region indicates the real location of -35 
promoter, it can be discovered that the highest peak appears 
around the location of 62, so the predicted location for -35 
promoter should be 27. Since the center of the red region is at 
78, the identification error is 51 bases. However, if we consider 
the secondly highest peak, which locates at 121 and 43 bases 
away from the center of the red region, the predicted location is 
86 and the identification error is mere 8 bases. In fact, there is a 
restriction enzyme Taq-I recognition site at location 63, it 
might be responsible for the highest peak. We are currently 
researching on this interesting result that points out the ability 
of the algorithm to identify other signal sequences. 

By using both -35 and -10 region of the conserved 
sequences to form the conserved sequence table, we obtain a 
more accurate identification result as shown in the following 
figure. The red region indicates the real location of the -35 
promoter and the green region indicates the -10 promoter. In 
the same way, with the highest peak located at 116, it can be 
discovered that the identification errors for -35 and -10 
promoter are 3 and 5 respectively. They are far smaller than 
those corresponding identification errors in the two previous 
cases. This is due to the use of longer conserved sequences. 
The use of longer conserved sequences provides more reliable 
statistical information, thus a better identification performance. 

As a comparison, similar results are described in Figure 5c 
in [1]. In case of identifying -10 promoter with the PWM 
model method, since the peak around the real location, which is 
111, is not higher than the subsidiary peak 40 base-pairs 
upstream, the identification result of -10 promoter must 
combine with that of -35 promoter to achieve the real location. 
It involves a complex procedure of optimization and the choice 
of certain criteria. However, our proposed approach does not 
require any optimization operation, and it is faster and more 
accurate.  
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   Figure 1. System model for TFBS and signal detection based on 2χ  distance 
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                          Figure 2. -10 promotor identification                                                           Figure 3. -35 promotor identification            

IV. CONCLUSION 
In this paper, we have introduced a novel TFBS 

identification algorithm, which is based on 2χ  distance model. 
The proposed approach is more efficient than traditional 
method based on log-linear model, such as FMM [3], because it 
waives the need to evaluate highly complicated log likelihood 
function and objective function. Since this new approach takes 

into account the position-dependence of TF motifs in 
computing 2χ  distance, it also brings about significant 
performance improvement over the PWM [1] model method. 
By analyzing the simulation result, we have shown that, it is 
possible to obtain an accurate identification of the TFBS and 
related signals in the genome. 
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