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Abstract—The performance of remote estimation over wireless
channels is strongly affected by sensor data losses due to inter-
ference. Although the impact of interference can be alleviated by
applying cognitive radio technique which features in spectrum
sensing and transmitting data only on clear channels, the intro-
duction of spectrum sensing incurs extra energy expenditure. In
this paper, we investigate the problem of energy-efficient spec-
trum sensing for remotely estimating the state of a general linear
dynamic system, and formulate an optimization problem which
minimizes the total sensor energy consumption while guaranteeing
a desired level of estimation performance. We model the problem
as a mixed integer nonlinear program and propose a simulated
annealing based optimization algorithm which jointly addresses
when to perform sensing, which channels to sense, in what order
and how long to scan each channel. Simulation results demonstrate
that the proposed algorithm well balances the sensing energy
and transmission energy expenditure and can achieve the desired
estimation performance.

Index Terms—Cognitive radio, energy efficiency, optimization,
simulated annealing, spectrum sensing, state estimation.

I. INTRODUCTION

E STIMATING the states of dynamic processes is a fun-
damental task in many real-time applications such as

environment monitoring, health-care, smart grid, industrial
automation and wireless network operations [2]–[4]. Among
existing estimation algorithms, we consider Kalman filtering
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[5], which has been widely applied for estimating the state of
wireless channels [6], local power of a mobile station in cellular
networks [7], and number of active terminals in wireless local
area networks [8], [9], etc.

In many cases, sensor measurements are transmitted through
wireless media to a remote estimator (or controller) which then
performs state estimation and makes certain decisions based on
the estimation results. However, due to factors such as interfer-
ence, sensor packets may randomly get lost before successfully
arriving at the estimator. Under packet losses, the estimator has
intermittent observations of the dynamic process such that the
amount of information for state estimation is decreased, which
can significantly affect the estimation performance. Kalman
filter has been shown optimal for estimating linear processes
with lossy measurements; however, the estimation stability
imposes strict constrains on the packet loss rate [5], [10],
[11]. Many existing studies only consider one wireless channel,
while practically we can have multiple accessible channels
which may help reduce packet loss.

Multi-channel wireless communications can significantly re-
duce interference and improve the communication throughput
[12]. To alleviate the impact of interference and improve es-
timation performance, a promising solution is to explore the
availability of multiple channels using cognitive radio (CR)
technology [13] for sensor data transmission. With the CR
technology, before accessing a channel, a sensor performs
spectrum sensing to assess the availability of that channel. In
such a “listen before talk” manner, the sensor transmissions can
avoid heavy interferences from other transmissions on the same
channel and hence the sensor packets become less likely to get
lost. As a result, the estimation performance is expected to be
improved.

In the literature, a lot of studies focus on spectrum sensing
efficiency to improve network throughput [14]–[17], while only
a few consider the design and evaluation of spectrum sensing
for the state estimation problem [18], [19]. However, studies
in [18], [19] focus on actively applying spectrum sensing to
improve estimation performance, without taking the critical and
challenging energy efficiency issue into account. Since both
data transmission and spectrum sensing are energy consum-
ing, the system energy efficiency leads to a tradeoff between
spectrum sensing and transmission. In this paper, we inves-
tigate the problem of energy-efficient spectrum sensing for
state estimation. Specifically, with the objective to minimize
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energy consumption with guaranteed estimation performance,
we investigate the following fundamental questions:

• When to perform spectrum sensing?
• Which channels to sense?
• In what order to scan the channels?
• How long to spend on scanning each channel?
The first question relates to the problem of scheduling sen-

sor activities. The second and third questions concern about
channel selection and channel sensing order. The last question
arises because both sensing accuracy (and hence estimation
performance) and energy consumption depend on the sensing
time. Although there are some studies on each of the above
questions [20]–[27], there lacks a holistic solution to these
questions in the context of state estimation.

In thispaper,westudytheproblemofenergy-efficient spectrum
sensing strategy for state estimation, aiming at systematically
addressing the above four fundamental issues. Specifically,
focusing on a general linear dynamic process, we consider the
problem of minimizing the energy consumption of the sensor
while guaranteeing a desired level of estimation performance.
The main contributions of this paper can be summarized as
follows. 1) We provide a cyber-physical model of the whole
system for state estimation and formulate the above optimiza-
tion problem as a mixed integer nonlinear program (MINLP),
subjecting to an estimation performance constraint. 2) We first
exploit the single-channel case and derive a condition under
which the estimation error covariance is stable in mean sense.
Since the mean estimation error covariance is usually a random
value and may vary slightly but not converge along time, the
explicit expression for the mean estimation error covariance is
difficult to obtain. We thus resort to a close approximation of
the constraint which results in an approximated optimization
problem whose solution suffices the original problem. We also
provide analytical results of the optimization solution. 3) We
extend the approximate MINLP formulation into the general
multi-channel case and propose an algorithm based on both
Lagrange multiplier method and simulated annealing. The
new algorithm can jointly determine all of the following: the
optimal sensing schedule, the optimal set of channels to sense,
the optimal channel sensing order and the optimal sensing time
on each channel. 4) Extensive simulation results demonstrate
that the proposed algorithm well balances the sensing energy
and transmission energy expenditure and can achieve the
optimal goal. To the best of our knowledge, we for the first time
formulate and address the energy efficiency issue in spectrum
sensing based state estimation over multiple wireless channels.

Some primary results have been presented in [1]. The re-
mainder of the paper is organized as follows. Section II presents
more related work. Section III presents system model and the
optimization problem. The problem in the single-channel case
is solved in Section IV. Extension to multi-channel cases is
presented in Section V. Section VI presents simulation results,
and Section VII concludes the paper.

II. RELATED WORK

The stability of Kalman filter under random packet losses has
gained intensive studies recently. In the case that the packet

losses are independently and identically distributed, the esti-
mation error (in mean square sense) is stable only when the
packet loss rate is below a certain bound [5]. Recently, there
has been a large volume of literature investigating the problem
of state estimation stability in various wireless communication
situations, e.g., Markovian and semi-Markov packet losses [10],
[28] and more general packet loss processes [11]. These results
explicitly show that the estimation stability heavily depends on
the packet loss process. However, most studies consider only
one wireless channel for sensor data transmission.

Basically, there are two major challenges in the application
of spectrum sensing for remote state estimation over multiple
wireless channels. First, the spectrum sensing results may be
inaccurate [26], which in turn affects the subsequent trans-
mission successfulness and consequently the estimation per-
formance. For example, spectrum sensing on a busy channel
may mistakenly indicate that the channel is currently idle, and
a subsequent transmission on it will get collided and probably
lost. Considering that multiple channels can be accessed for
sensor data transmission, Ma et al. derive an optimal estimation
algorithm and analyze the estimation stability assuming a semi-
Markov channel model and accurate spectrum sensing [18],
[29]. With inaccurate spectrum sensing, the question of whether
and to what extent the state estimation performance can be
improved is addressed in [19].

Energy efficiency is an important design issue for today’s
wireless systems [30]–[33]. System energy efficiency is the
second challenging issue which further introduces the sensor
scheduling, channel selection, sensing order and sensing time
optimization problems. It has been proved that the optimal data
transmission schedule can be approximated by periodic (not
necessarily strictly periodic) scheduling with arbitrarily close
performance [34]. From the energy perspective, for a class of
state estimation problems over a finite long time horizon, it
also has been shown that the optimal sensor schedule is to
distribute the data transmission time along the time horizon as
uniform as possible [20]. These studies focus on scheduling the
transmitting time; while in our case, we consider scheduling
the spectrum sensing time. Aside from the fact that they only
consider one channel, a major difference in our case is that,
after carrying out sensing, the sensor may not transmit data if
the sensing result indicates that the channel is unavailable.

The problems of channel selection and channel sensing order
are mostly studied within the communication community. A
three-step channel selection mechanism is proposed to maxi-
mize the channel efficiency of cognitive radio users [21]. In
[22], a polynomial-time algorithm is designed to select chan-
nels out of a set of candidates to optimize user profit (e.g.,
throughput). The optimal channel sensing order in cognitive
radio networks also has been investigated and effective search-
ing algorithms have been designed in the literature [23], [25].
While many existing studies target at maximizing the overall
throughput, in this paper, we emphasize on the reliability of
each sensor transmission. Moreover, rather than continuously
transmit a considerable amount of data after sensing an idle
channel, the transmission in our case happens sporadically (as
a consequence of spectrum sensing scheduling) and each time
only the latest sensor packet is transmitted for state estimation.
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Fig. 1. A cyber-physical view of the system architecture.

The optimal sensing time problem for spectrum efficiency
maximization has been studied in [26]. Applying the cognitive
radio technique to the communications between power con-
sumers and the control unit in smart grid, the work in [27]
shows that there exists a unique optimal sensing time which
yields maximal system profit.

III. SYSTEM MODEL AND PROBLEM SETUP

In this paper, we focus on the problem of remotely es-
timating the state of a generic discrete-time linear dynamic
system, one of the most widely studied dynamic system models.
Examples are the channel coefficients dynamics [6] and the
shadow process dynamics [7], where the system states are
channel coefficients in MIMO networks and shadowing power
fluctuations in cellular environment, respectively. Both of them
also adopt linear measurement models (e.g., the measurement
of received signal is modeled as a linear combination of channel
coefficients and a channel thermal noise [6]). In other applica-
tions such as environment monitoring, mobile target tracking
and industrial process control, linear systems are often adopted
to model the dynamic processes therein as well as sensor
measurements [2].

Consider that the process is periodically sampled by a wire-
less sensor and the measurement data will be transmitted to a re-
mote estimator. At the beginning of each sampling period (also
called step), the sensor first takes a measurement of the target
dynamic system state and transmits this measurement packet to
the remote estimator over a wireless channel. The sensor data
transmission is augmented by the spectrum sensing technique.
A transmission will be unsuccessful, i.e., a packet drop will
happen, if the sensor transmits the packet when the channel is
busy. The whole system can be described from a cyber-physical
point of view. Fig. 1 illustrates the interactions between the
cyber and physical spaces for state estimation over one wireless
channel. The main notations used throughout this paper are
listed in Table I. We use boldface lowercase and uppercase
letters to represent column vectors and matrices, respectively.
E[·] and P[·] denote the expectation and probability of a random
variable, respectively. (·)T denotes the transpose of either a
vector or a matrix while trace(·) denotes the trace of a matrix.

A. Physical Space

The target dynamic system is modeled as follows (the discrete-
time steps are determined by the sensor’s sampling period Ts):

xk+1 = Axk +wk, (1)

TABLE I
BASIC NOTATIONS

where x ∈ R
q1 is the system state and q1 is its dimension, w

is the system noise with E[wkwT
k ] = Q ≥ 0.1 A is a constant

square matrix modeling the state dynamics in two successive
time steps. Assume that (A,Q

1
2 ) is controllable [5].

The sensor measurement of the system state in kth step is
modeled as

yk = Cxk +vk, (2)

where v is the measurement noise with E[vkvT
k ] = R ≥ 0 and

E[wivT
j ] = 0. y ∈ R

q2 (where q2 is its dimension) and C ∈
R

q2×q1 . Both w and v are assumed Gaussian with zero means.
Assume that C has full column rank for simplicity.

The estimator applies the following modified Kalman Fil-
ter [5] to estimate the system state x recursively. Given the
system functions as shown in (1) and (2), define x̂k|k−1 and
x̂k|k as the prediction and estimate of the system state at step

k, respectively. Define Pk|k−1
Δ
= E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ]

and Pk|k
Δ
= E[(xk − x̂k|k)(xk − x̂k|k)

T ] as the covariance of the
prediction and estimation errors, respectively. The prediction
can be calculated based on the system model in (1) as follows.{

x̂k|k−1 = Ax̂k−1|k−1,
Pk|k−1 = APk−1|k−1AT +Q.

(3)

As mentioned above, packets may be dropped. Let γk ∈
{0,1} represent whether the measurement packet is dropped
or successfully received by the estimator in step k, i.e., γk = 1
if received and γk = 0 otherwise. P[γk = 1] characterizes the
successful packet transmission rate which will be elaborated
in the next subsection. In the case of γk = 1, according to the
standard Kalman filter design, the state estimate can be updated
as follows:⎧⎨

⎩
x̂k|k = x̂k|k−1 +Kk(yk −Cx̂k|k−1),

Kk
Δ
= Pk|k−1CT

(
CPk|k−1CT +R

)−1
,

Pk|k = (I−Kk)Pk|k−1,
(4)

with a given initial value P1|0 ≥ 0, where I is an identity
matrix of compatible dimension. Otherwise, without receiving
the measurement of the current system state from the sensor,
the estimator has to use the prediction to update its estimate [5],

1For any square matrix M, by M ≥ 0 (or M > 0) we mean that M is a semi-
positive (or positive) definite matrix. For any two square matrices M1 and M2
of the same dimension, M1 ≥ M2 means that M1 −M2 ≥ 0.



CAO et al.: ENERGY-EFFICIENT SPECTRUM SENSING FOR CR ENABLED REMOTE STATE ESTIMATION 2061

i.e., x̂k|k = x̂k|k−1 and Pk|k = Pk|k−1. Obviously, the estimation
performance relies on the random variables {γ1, . . . ,γk}.

B. Cyber Space

The main task of the cyber sub-system is to decide whether
to sense the channel and to transmit the measurement packet in
each step. For ease of exposition, we focus on a single channel
in this section. Extension to the multi-channel case is presented
in Section V.

1) Channel Model: Let tI and tB represent the idle and busy
periods of the channel, respectively. They model the activities
of all users other than the sensor on that channel over a long
time. Assume that tI and tB obey certain distributions as tI ∼
ΓI(·) and tB ∼ ΓB(·), where ΓI and ΓB are the cumulative
distribution functions of tI and tB, respectively. Let E[tI ] and
E[tB] be the average idle and busy periods, respectively. Define

ρ =
E[tB]
E[tI ]

, (5)

which is an important characteristic of the channel. The proba-
bilities that the channel is idle and busy are respectively

pI =
1

1+ρ
and pB =

ρ
1+ρ

. (6)

We assume that the sensing time τ is bounded within [0, τ̄]
and is small enough such that the channel state does not
change during the sensing time. The sampling period Ts �
max(E[tB],E[tI ]), so that the packet drop rate in the current
sampling period is irrelevant with that in previous steps. Based
on this, the measurement packet drop rate, i.e., P[γk = 0], also
can be deemed time-independent.

Once the channel is idle at time t and the sensor transmits a
packet from t, the transmission may still be unsuccessful if the
channel enters a busy period during [t, t + tx]. Let t̃I be the time
that the channel remains in idle state, given that it is currently
idle. According to [35], the probability density function of t̃I
can be expressed as 1

E[tI ]
[1−ΓI(t̃I)]. Then, the probability that

t̃I will last for at least tx period of time (i.e., the transmission
during [t, t + tx] is successful) is

η =P[t̃I > tx] = 1−P[t̃I < tx]

=1− 1
E[tI ]

∫ tx

0
[1−ΓI(t)] dt. (7)

As a popular channel model [26], [36], both the busy and
idle periods are assumed following Poisson distributions with
mean values E[tB] = 1

β and E[tI ] = 1
α , respectively. In this case,

ΓI(t) = 1− e−αt , ΓB(t) = 1− e−βt and η can be simplified as

η = 1−α
∫ tx

0
e−αt dt = e−αtx .

2) Channel Sensing: Before transmitting a packet, the sen-
sor must check the channel state and transmit packet only
when the channel is in its idle state. The sensing process lasts
for a period of τ, during which the sensor mainly analyzes
signals received from the channel and then decides whether the
channel is idle or not. Among channel sensing strategies, energy
detection is one of the most popular methods [26], [37]. An

important drawback of this technique is that the sensing results
may be inaccurate, e.g., the sensing process may mistakenly
report idle state of the channel when it is actually busy. Let sc

be the sensing outcome (with 0 indicates idle and 1 otherwise)
and define following two probabilities.

pd =P[sc = 0| channel idle] = Q
(
(1− εd)

√
τW

)
, (8)

p f =P[sc = 0| channel busy] = Q
(
(1− ε f )

√
τW

)
, (9)

where εd > ε f > 0, W is the channel bandwidth, and Q(z)
Δ
=

1√
2π

∫ ∞
z e−

τ2
2 dτ. pd and p f are called the correct and false detec-

tion probabilities, respectively. Equations (8) and (9) and more
details about energy detection are presented in Appendix A.

After sensing the channel, the sensor will transmit packet
only if the sensing result indicates an idle channel. Thus, the
transmission probability is

ptx = pI pd + pB p f =
1

1+ρ
(pd +ρp f ). (10)

Define a sequence of variables {θk ∈ {0,1}}k≥1 as

θk =

{
1, if to sense the channel in step k,
0, otherwise.

(11)

Under the case that θk = 1, the successful packet transmis-
sion rate can be given as follows.

γ Δ
= P[γk = 1|θk = 1,sc,k = 0] = pIηpd =

η
1+ρ

pd , (12)

where sc,k is the channel sensing result at step k.

Let Θ Δ
= {k|θk = 1} be the channel sensing schedule. Define

Θ̄ = limt→∞
1
t ∑t

k=1 θk.

C. Problem Formulation

Let es and etx denote the amounts of energy consumed by the
sensor for sensing the channel and transmitting a measurement
packet, respectively. If channel sensing is performed in step
k, the average amount of energy consumed by the sensor in
this step isϕs = τes + ptxetx. Therefore, under schedule Θ, the
average energy consumption in a single step is

ϕ̄ =
1

Θ̄
ϕs =

1

Θ̄
(τes + ptxetx). (13)

As can be seen, we take both spectrum sensing energy and
data transmission energy into account. Since we focus on the
energy consumption of the sensor, the receiving energy at
the remote estimator (which is supposed to have much richer
energy resource) is not considered in our optimization problem.
For the sensor, according to (13) and (10), the probability that
it transmits measurement packets depends on the spectrum
sensing results and further on the sensing time τ, in which
sense the transmission energy depends on how much energy is
spent on sensing the channels. Another fact is that the spectrum
sensing energy is the energy expenditure for the sensor to
receive and determine whether the channel state by means
of energy detection. Since the communication energy often
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dominates others, our optimization objective function in terms
of the sum of spectrum sensing energy and transmission energy
can be viewed as the total energy that the sensor spends for both
receiving and transmitting.

The estimation performance can be characterized by the

error covariance Pk|k−1. Hereafter, Pk
Δ
= Pk|k−1 for ease of

presentation. Based on the estimation process in Section III-A,
we can see that Pk is a function of the random variable γk;
hence it is both random and time-varying and may not converge
along an infinite horizon. Therefore, we consider the long-time
average of the expected Pk, i.e., 1

L ∑L
k=1E[Pk], where L is a

sufficiently large number. We aim to bound the average value
below a user defined threshold P̄. Our optimization problem can
be formulated as follows.

Problem 1: Find the optimal schedule Θ and channel sensing
time τ to ⎧⎪⎨

⎪⎩
min
Θ,τ

ϕ̄ = 1
Θ̄ (τes + ptxetx)

s.t. 1
L ∑L

k=1E[Pk]≤ P̄,
0 ≤ τ ≤ τ̄.

(14)

In the above, the objective is a function of the channel
sensing time τ, the sensing schedule Θn, the channel sensing
accuracy (pd and p f ) and the characteristics of the channel (pI

and pB). Meanwhile, as discussed in the physical space model,
the estimation performance depends on the successfulness of
packet transmissions {γk} which further depends on the sens-
ing accuracy and channel characteristics. Therefore, both the
objective and constraints of Problem 1 depend on the models
of both cyber and physical spaces of the whole cognitive radio
enabled state estimation system.

In this paper, we restrict our attention to strict periodical

sensing schedule, i.e., Θ = Θn
Δ
= {0,n,2n, . . .}= {ki|ki = in, i ∈

N
+∪{0}}. In this case, the objective reduces to

min
n,τ

ϕ̄ =
1
n
(τes + ptxetx). (15)

For an arbitrary schedule Θ, the optimization problem be-
comes significantly complicated since the solution space for Θ
is infinitely large even if Θ̄ is small. As presented in Section II,
prior studies show that periodic schedules can approximate the
optimal state estimation performance with arbitrary accuracy,
which encourages us to focus on periodic schedule. Another
reason for considering periodic schedule lies in its simplicity
and ease of implementation.

As can be seen, Problem 1 is an MINLP. The problem in the
case of multiple channels involves extra decision variables such
as the set of channels to be sensed and the sensing order and is
formulated in Section V.

IV. OPTIMIZATION IN SINGLE-CHANNEL CASE

Since we impose strict bound on the mean square estimation
error in the optimization problem, a necessary condition is that
the mean square estimation error is finite (i.e., the estimation
is stable), to ensure the problem feasibility. Therefore, in this
section, we first examine the stability of the estimation error
in mean square sense. Then we present problem approximation
which ensures the problem tractability.

A. Estimation Stability

To satisfy the constraints in (14), {E[Pk]} must be stable,
i.e., E[Pk] < ∞,∀k ≥ 1. For any k ≥ 1, if θk = 1, based on the
estimation process in Section III-A, we have

Pk =APk−1AT +Q

− γkAPk−1CT (CPk−1CT +R
)−1

CPk−1AT

=(1− γk)APk−1AT +Q

+ γkA
(
P−1

k−1 +CT R−1C
)−1

AT

=(1− γk)APk−1AT +Q+ γkAϒk−1AT , (16)

where ϒk−1
Δ
= (P−1

k−1 +CT R−1C)−1. Since P−1
k−1 ≥ 0, ϒk−1 is

upper-bounded by (CT R−1C)−1 (notice that C has full column
rank) [19]. Otherwise, θk = 0, which is similar to the case that
the measurement packet gets lost. That is, Pk = APk−1AT +Q.
Therefore, we can write compactly that Pk = hθkγk(Pk−1) with

hθkγk(Pk−1)
Δ
= APk−1AT +Q

−θkγkAPk−1CT (CPk−1CT +R
)−1

CPk−1AT . (17)

We can obtain the following condition for the stability of
{E[Pk]} which is both necessary and sufficient. The proof is
provided in Appendix B.

Theorem 1: ∀n ≥ 1, {E[Pk]} is stable if and only if

(1− γ)λ2n
max(A)< 1, (18)

where λmax(A) is the maximum absolute values of matrix A’s
eigenvalues.

Since pd ≤ 1, (12) gives that γ ≤ η
1+ρ . Therefore, an upper

bound of n can be obtained based on (18) as follows.

n ≤ n̄1 =

{⌈
ln(1+ρ)−ln(1+ρ−η)

2ln(λmax(A))

⌉
−1, if λmax(A)> 1,

∞, otherwise.
(19)

B. Problem Approximation

As shown in (16), since Pk−1 appears in the inverse term of
ϒk−1, E[Pk] will depend on all possible values of the random
sequence {γk}k≥1. In this case, E[Pk] may not necessarily
converge to a steady value.2 As a result, it is mathematically
difficult to obtain the long-term average of E[Pk]. Instead, for
the problem tractability, we resort to an upper bound of E[Pk]
to sufficiently satisfy the constraint in Problem 1. Based on
Lemma 1 in [5], hγ(·) is a concave function. Thus, applying
Jensen’s inequality and noticing that E[Pk] = h0(E[Pk−1]) if
θk = 0, we get that E[Pk] ≤ hθkγ(E[Pk−1]). Define a new
sequence {Yk} with

Yk
Δ
= hθkγ(yk−1). (20)

Then, E[Pk] ≤ Yk if we let Y0 = P0. Thus, {Yk} serves as an
upper-bound sequence of {E[Pk]}.

2An example in Section VI shows that E[Pk] always varies along time.



CAO et al.: ENERGY-EFFICIENT SPECTRUM SENSING FOR CR ENABLED REMOTE STATE ESTIMATION 2063

Fig. 2. Approximation error. We use matrix trace to produce scalar values as
measures of the estimation performance.

Lemma 1: If condition (18) holds, there exists a unique value
Ȳ(γ,n) such that

lim
L→∞

1
L

L

∑
k=1

Yk = Ȳ(γ,n). (21)

In addition, Ȳ(γ,n) is monotonically decreasing as either γ
increases or n decreases.

Therefore, for a sufficiently large L,

1
L

L

∑
k=1

E[Pk]≤
1
L

L

∑
k=1

Yk → Ȳ. (22)

In this sense, the constraint in Problem 1 can be approxi-
mated as Ȳ(γ,n)≤ P̄.

Remark 1 (Approximation Error): The approximation error
is mainly caused by the application of Jensen’s inequality. To
characterize the approximation error, we consider the following
lower bound of the long-term average of E[Pk]. Define a new
sequence {Pk} with

Pk =(1−θkγk)APk−1AT

+θkγkA
(
Q−1 +CT RC

)−1
AT +Q},

and P0 = P0. By Theorem 5 in [19], we can prove that Pk ≤
Pk,∀k, and that

E[P∞]
Δ
= lim

k→∞
E[Pk]

=
∞

∑
κ=0

(1− γ)κAκ [γA(Q−1 +CT RC)−1AT +Q
]
(AT )κ,

where the infinite summation yields a finite value since
(1− γ)λ2

max(A) < 1 which is ensured by condition (18) as in
Theorem 1. In fact, E[P∞] is the unique solution of the
Lyapunov equation X = (1 − γ)AXAT + γA(Q−1 +
CT RC)−1AT + Q. Therefore, the approximation error is
bounded by

1
L

L

∑
k=1

Yk −
1
L

L

∑
k=1

E[Pk]≤
1
L

L

∑
k=1

(Yk −Pk)→ Ȳ−E[P∞].

To show the approximation error, we conduct simulations
using the same settings as in Section VI. The results are shown
in Fig. 2. As illustrated, both the true approximation error and
its bound as presented above are very low.

Due to the monotonicity of Ȳ(γ,n) in γ, it is equivalent to say
that γ ≥ γ(n) where γ(n) is the unique solution of γ to Ȳ(γ,n) =
P̄. On the other hand, since γ ≤ η

1+ρ , the inequality Ȳ( η
1+ρ ,n)≤

Ȳ(γ,n)≤ P̄ yields another upper bound on n:

n ≤ n̄2 = max

{
ñ|Ȳ

(
η

1+ρ
, ñ

)
≤ P̄

}
< ∞. (23)

Therefore, we obtain an approximation of Problem 1 as below.
Problem 2: Find the optimal schedule Θn and channel sens-

ing time τ to ⎧⎪⎪⎨
⎪⎪⎩

min
n,τ

ϕ̄ = 1
n (τes + ptxetx)

s.t. γ ≥ γ(n),
n ≤ n̄ = min{n̄1, n̄2},
0 ≤ τ ≤ τ̄.

(24)

The solution to the above problem will be presented in
Section V since Problem 2 is a special case of Problem 1
for multi-channel cases. For the single-channel optimization
problem, according to the analysis below, the objective is either
convex or concave but monotone in τ while the constraint is
monotone. Therefore, the optimal solutions can be obtained by
considering the four scenarios in the next sub-section.

C. Analysis of the Optimal Solution

Given any n, Problem 2 reduces to a subproblem with τ as the
only decision variable. Since n< n̄, the optimal n∗ and τ∗ can be
obtained by solving n̄ such subproblems. In the following, we
analyze the optimal solution τ∗n under any given n. We focus on
that ρ< 1, while the case that ρ≥ 1 can be analyzed in the same
way. For ease of analysis, we assume τ is continuous. Given n,
the subproblem has following properties.

∂γ
∂τ

=(1− p1)
∂pd

∂τ

=
(1− p1)

√
W

2
√

2πτ
(εd −1)e−

(1−εd )
2

2 Wτ, (25)

∂ϕ̄
∂τ

=
1
n

(
es +

etx

1+ρ

(
∂pd

∂τ
+ρ

∂p f

∂τ

))

=
1
n

(
es +

etx
√

W

2(1+ρ)
√

2πτ
Λτ

)
, (26)

Λτ
Δ
=(εd −1)e−

(1−εd )
2

2 Wτ −ρ(1− ε f )e
−

(1−ε f )
2

2 Wτ. (27)

Depending on the values of εd and ε f (note that ε f < εd), the
shapes of the γ and ϕ̄ curves are described as follows.

1) If either εd ≥ 1 and ε f ≥ 1 or ρ ≤ εd−1
1−ε f

≤ 1 and ε f < 1, it

is easy to see that ∂γ
∂τ ≥ 0 and ∂ϕ̄

∂τ ≥ 0, which means that both γ
and ϕ̄ are increasing as τ increases. This corresponds to case 1
as shown in Fig. 3(a).

2) If εd−1
1−ε f

> 1 and ε f < 1, since e−
(1−εd )

2

2 Wτ < e−
(1−ε f )

2

2 Wτ,

Λτ varies from positive infinite to a negative value and finally
converges to 0. Depending on the parameters such as es and etx,
the shape of ϕ̄ will be in the form of either case 1 or case 2 as
shown in Fig. 3(b).
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Fig. 3. Illustrations of the optimal τ under different εd and ε f . (a) Case 1.
(b) Case 2. (c) Case 3. (d) Case 4.

3) If 0 ≤ εd − 1 < ρ(1− ε f ), one can verify that ∂2

∂2τ Λτ > 0;

hence, ∂ϕ̄
∂τ increases from negative infinite to a positive value.

Therefore, as shown in Fig. 3(c), ϕ̄ is a convex function.
4) Otherwise, εd < 1. Then, ε f < 1 either. Consequently, ∂γ

∂τ <

0 and ∂
∂τ Λτ < 0. As shown in Fig. 3(d), the objective function is

convex.
As shown in the figure, in case 1, the optimal τ∗n is the smaller

one between τ̄ and the point where γ = γ(n). In the other cases,

let τn,ϕ̄ and τn,γ be the solution points for ∂ϕ̄
∂τ = 0 and γ = γ(n),

respectively. In case 2, τ∗n is among {0,τn,ϕ̄,τn,γ, τ̄}. In the other
cases, τ∗n ∈ {τn,ϕ̄,τn,γ, τ̄}.

V. OPTIMIZATION IN MULTI-CHANNEL CASE

If the sensor is able to sense multi-channels, say {CHi|i ∈
C = {1,2, . . . ,m}}, it may gain more opportunities to success-
fully deliver packets to the estimator, but at the cost of spending
more sensing energy. In such a multi-channel case, the sensor
needs to not only choose channels and determine the sensing
time to be spent on each of them before transmitting a packet,
but also decide the channel sensing order.

Suppose l channels will be sensed in each step. Denote Ol =
{o1,o2, . . . ,ol} ⊆ C as the channel sensing order as described
below. As shown in Fig. 4, in each step, the sensor starts sensing
the channels one-by-one from CHo1 to CHol . If currently CHoi

is found idle (with sensing time τoi and detection probability
pd,oi), the sensor will transmit packet over CHoi . Otherwise, it
will change to sense the next channel. If no channel is found
idle, the sensor will drop the packet. For simplicity, we assume
that ∑l

i=1 τ̄oi < Ts. To save energy, we also assume that the
sensor keeps in sleep mode if it is neither sensing a channel
nor transmitting a packet.

A. The Optimization Problem

For any Ol and any sensing time τ = {τo1 ,τo2 , . . . ,τol}, the
probability that the sensor will transmit packet, i.e., at least one

Fig. 4. Channel sensing order in one sampling period.

channel in Ol is found idle, can be given by

ptx(Ol ,τ) = 1−
l

∏
i=1

(1− ptx,oi), (28)

where ptx,oi is defined in (10). Let pc,oi be the probability of
packet collision3 if the sensor senses CHoi . By definition, pc,oi

can be obtained by

pc,oi = pB,oi p f ,oi + pI,oi(1−ηoi)pd,oi

=
1

1+ρoi

[ρoi p f ,oi +(1−ηoi)pd,oi ] . (29)

Then, the overall packet collision probability is

pc(Ol ,τ) = pc,o1 +
l

∑
i=2

pc,oi

i−1

∏
j=1

(1− ptx,o j), (30)

and the successful packet transmission rate can be computed as

γ(Ol ,τ) = ptx(Ol)− pc(Ol)

=1− pc,o1 −
l+1

∑
i=2

pc,oi

i−1

∏
j=1

(1− ptx,o j)

=
l

∑
i=1

(ptx,oi − pc,oi)
i−1

∏
j=1

(1− ptx,o j), (31)

where, for ease of presentation, we define pc,ol+1 = 1 and

∏0
j=1(1− ptx,o j) = 1. Substituting (29) and (10) into the above

equation, we get

γ(Ol ,τ) =
l

∑
i=1

ηoi pd,oi

1+ρoi

i−1

∏
j=1

1− pd,oi +ρoi(1− p f ,o j)

1+ρoi

≤
l

∑
i=1

pd,oi

1+ρoi

i−1

∏
j=1

1− pd,o j +ρo j

1+ρo j

=
l

∑
i=1

[
1−

(
1− pd,oi

1+ρoi

)] i−1

∏
j=1

(
1−

pd,o j

1+ρo j

)

=
l

∑
i=1

i−1

∏
j=1

(
1−

pd,o j

1+ρo j

)
−

l

∑
i=1

i

∏
j=1

(
1−

pd,o j

1+ρo j

)

=1−
l

∏
i=1

(
1− pd,oi

1+ρoi

)

≤1−
l

∏
i=1

ρoi

1+ρoi

,

3A collision occurs when the sensor transmits a packet during a busy period
of channel CHoi .
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where we have used the fact that p f ,oi ≥ 0 and ηoi ≤ 1 in obtain-
ing the first inequality, and that pd,oi ≤ 1 in the last inequality.
According to Theorem 1, we must have (1−γ(Ol ,τ))λ2n

max(A)<
1. Combining the above inequality, we can obtain an upper
bound of n as follows.

n ≤ n̄1(Cl) =

⎧⎨
⎩
⌈

∑l
i=1 ln

(
1+ 1

ρoi

)
2ln(λmax(A))

⌉
−1, if λmax(A)> 1,

∞, otherwise,

(32)

where Cl is the index set of channels to be sensed. If given either
Ol or τ, Cl can be easily determined. Moreover, similar to (23),
we can obtain another bound on n as follows.

n ≤ n̄2(Cl)=max

{
ñ|Ȳ

(
1−

l

∏
i=1

ρoi

1+ρoi

, ñ

)
≤ P̄

}
< ∞. (33)

We assume the sensor uses the same channel sensing energy
es and the same transmitting energy etx on these channels. The
average energy consumption in the sensing step is

ϕ(Ol ,τ) =τo1es+ptx,o1etx+(1− ptx,o1)(τo2es+ptx,o2etx)

+ . . .+
l−1

∏
i=1

(1− ptx,oi)(τol es + ptx,ol etx)

=
l

∑
i=1

(τoies + ptx,oietx)
i−1

∏
j=1

(1− ptx,o j). (34)

With the above formulation, Problem 2 can be updated as:
Problem 3: Find the optimal channel sensing schedule Θ∗

n,
the optimal channel sensing order O∗

l and the optimal channel
sensing time τ∗ = {τ∗o∗1 ,τ

∗
o∗2
, . . . ,τ∗o∗l } to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
n,Ol ,τ

J = 1
n ϕ(Ol ,τ)

s.t. γ(Ol ,τ)≥ γ(n),
n ≤ n̄(Cl) = min{n̄1(Cl), n̄2(Cl)},
0 ≤ τoi ≤ τ̄oi , i = 1, . . . , l,
l ≤ m.

(35)

Note that the set of all possible Ol is the power set of C , i.e.,
2C , where |2C |= 2m. In this sense, the above problem is a mixed
integer program with both n and Ol chosen from two finite
sets, respectively. For each given n and Ol , both the objective
function and constraints of the above problem are continuous
with respect to the decision variable τ. Moreover, since each
τi is constrained within a finite but nonempty interval, by the
extreme value theorem, the solution set of the global optimiza-
tion of Problem 3 under given n and Ol is nonempty. Therefore,
since the choices of n and Ol are finite, the solution set of the
global optimization of Problem 3 is nonempty as well.

B. Algorithm Design

To address Problem 3, we apply two techniques: (1) a
Lagrange multiplier is applied to the first constraint to transform
Problem 3 into its dual, by which means searching the large
power set 2C is avoided; and (2) a simulated annealing (SA)
based method is applied to search for the optimal τ where the

SA technique has the potential to escape from local optima and
achieve a good approximation of the global optimal solution.

1) Dual Function: We can introduce a Lagrange multiplier
µ ≥ 0 associated with constraint γ(Ol ,τ) ≥ γ(n) and define the
Lagrange dual function of Problem 3 as

L(µ) = min
Ol ,τ,n

{
1
n

ϕ(Ol ,τ)−µ
(

γ(Ol ,τ)− γ(n)
)}

= min
τ

{L(µ,τ)} , (36)

where

L(µ,τ) Δ
= min

n<n̄(Cl)

{
min

Ol

{M (Ol ,µ,τ,n)}+µγ(n)
}
,

M (Ol ,µ,τ,n) =
1
n

ϕ(Ol ,τ)−µγ(Ol ,τ)

=
l

∑
i=1

[
τoies + ptx,oietx

n
−µ(ptx,oi − pc,oi)

]i−1

∏
j=1

(1− ptx,o j)

=
l

∑
i=1

[τoies

n
+
(etx

n
−µ

)
ptx,oi +µpc,oi

]i−1

∏
j=1

(1− ptx,o j).

Then, the original problem can be transformed into

max
µ

: L(µ). (37)

We can adopt the following method to iteratively approach the
optimal µ.

µt+1 = max

{
0,µt +δ

∂
∂µt

L(µ)|O∗
l ,τ

∗,n∗

}
, (38)

where O∗
l ,τ

∗ and n∗ are the optimizers of (36) as determined
in the next subsection. δ is the step size of each iteration.
However, ∂

∂µt
L(µ) is difficult to obtain since O∗

l ,τ
∗ and n∗ are

all dependent on µ. Instead, we resort to a discrete approximated
approach to find ∂

∂µt
L(µ) by using a sufficiently small step size

δ. In this way, µ is updated as follows.

µt+1 = max

{
0,µt +δ

L(µt)−L(µt−1)

µt −µt−1

}
. (39)

2) Obtaining L(µ,τ): Given any µ and τ, L(µ,τ) is calcu-
lated by iterating n from 1 to at most n̄(Cl) and selecting the
optimal n that yields the minimum value. In each iteration, the
optimal sensing order is obtained based on Theorem 2 as below.
Then, L(µ,τ) is determined at the optimal n.

Theorem 2: For any µ > 0 and any sensing time τ, there will
be l channels (i.e., {CHi|τi ≥ 0}) to be sensed and the optimal
sensing order is

O∗
l = {o1,o2, . . . ,ol |∀ i ∈ {1, . . . , l −1},τoi ≥ 0,

H (oi,τoi)≤ H (oi+1,τoi+1)
}
, (40)

where H (oi,τoi)
Δ
=
( es

n τoi +µpc,oi

)
/ptx,oi .

Proof: Consider another sensing order Õl = {õ1, õ2, . . . ,
õl} which is a reordering of Ol . For any i ∈ {1, . . . , l−1}, if we
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swap õi and õi+1 in Õl and let Ŏl be the new sensing order, then
the difference in M is

M (Ŏl ,µ,τ,n)≤ M (Õl ,µ,τ,n)

⇔1
n

ϕ(Ŏl ,τ)−µγ(Ŏl ,τ)≤
1
n

ϕ(Õl ,τ)−µγ(Õl ,τ)

⇔
τõi+1es + ptx,õi+1etx

n
−µ(ptx,õi+1 − pc,õi+1)

+

[
τõi es + ptx,õi etx

n
−µ(ptx,õi − pc,õi)

]
(1− ptx,õi+1)

≤ τõi es + ptx,õi etx

n
−µ(ptx,õi − pc,õi)+(1− ptx,õi)

×
[

τõi+1es + ptx,õi+1etx

n
−µ(ptx,õi+1 − pc,õi+1)

]

⇔
(es

n
τõi+1 +µpc,õi+1

)
ptx,õi ≤

(es

n
τõi +µpc,õi

)
ptx,õi+1

⇔H (õi+1,τõi+1)≤ H (õi,τõi). (41)

(41) implies that the swapping will reduce the objective
M (Õl ,µ,τ,n). In other words, if we deem H (oi,τoi) as a
measure of the channel quality, (41) suggests that, for any pair
of channels, the one with better quality should be sensed first.
Continuing applying the “better channel first” rule, we will
finally get the optimal sensing order as in (40). �

3) Optimal Spectrum Sensing Algorithm (OSSA): We pro-
pose a simulated annealing based optimal spectrum sensing
algorithm (OSSA) to randomly search the sensing time τ. To
avoid searching across an uncountable space constructed by
the continuous intervals {[0, τ̄i]}, we assume that each τi can
only be chosen from a finite discrete set. Although such an
assumption may affect optimality of the obtained results, the
solutions are more practically implementable since the discrete
sensing time is compatible with the discrete sampling rate used
for channel sensing as in the energy detection technique as
presented in Appendix A. In fact, the sensor applies a certain
sampling rate (depending on the channel bandwidth Wi) to sense
each channel. That is, the sensing time τi can be viewed as a
discrete value with the unit time depending on Wi. Without loss
of generality, let τi ∈ {0,1, . . . , τ̄i} be the number of the time
units spent on sensing channel CHi. In particular, we define
τi = 0 if CHi will not be sensed and we do not allow blind
transmission on an un-sensed channel.

The pseudo codes of the proposed algorithm are shown in
Algorithm 1. Given µt , Algorithm 1 contains Kmax annealing
processes and each annealing process has κmax iterations. It
optimizes τ by letting each τi walk randomly with caution on
the set {0,1, . . . , τ̄i}. By "caution" we mean that each move
should be meaningful. Specifically, in each walk step (itera-
tion), a tentative sensing time τ̂ is generated randomly, and the
consequent value of L(µt , τ̂) is evaluated. If τ̂ is better than
the previous τ, i.e., ΔL = L(µt , τ̂)− L(µt ,τ) ≤ 0, τ̂ will be
accepted (i.e., τ will move to τ̂). Otherwise, τ̂ will be accepted
with a probability which depends on both ΔL and an annealing

temperature, not to have L(µt ,τ) be trapped at local optima.
By gradually decreasing the annealing temperature by a factor
ζ > 0 after the completion of each annealing process, L(µt ,τ)
will finally converge to one of the global optima. Finally, we
iteratively update µt until it converges, meaning that the dual
problem is solved and hence the original optimization is also
solved.

Remark 2: OSSA is derived from the standard simulated
annealing algorithm; however, our major novelty lies in that,
instead of randomly generating all the decision variables (i.e.,
channel sensing order Ol , sensing time τ and n which character-
izes the sensing schedule), we only generate the sensing time at
each iteration. Once τ is given, the optimal Ol is obtained based
on Theorem 2, while the optimal n is found by searching in
a finite set. Thus, at each iteration, by only randomly gener-
ating a τ̂, we can evaluate the objective function L(µt , τ̂) and
determine whether this τ̂ will be accepted or not based on the
improvement ΔL .

Remark 3 (Computation Complexity Analysis): In each iter-
ation t of OSSA, for each pair of (k,κ) (there are Kmaxκmax

of them), the computation complexity is O(n̄(C )m logm).
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Specifically, generating τ̂ has complexity O(m); for each
n, determining O∗

l has complexity O(m logm) and calcu-
lating M (O∗

l ,µt , τ̂,n) has complexity O(m); thus obtain-
ing n∗ and consequently determining ΔL have complexity
O(n̄(C )m logm). Therefore, the complexity in each iteration is
in the order O(Kmaxκmaxn̄(C )m logm).

Remark 4: OSSA is an off-line algorithm, which can be
executed at either the sensor or some computing center, e.g.,
the estimator. The output results are fixed over time so that the
algorithm only needs to run once. Therefore, a possible imple-
mentation can be as follows: the estimator runs the algorithm
and finds the solution off-line. It sends the solution to the sensor
which operates according to the solution from then on.

VI. SIMULATION RESULTS

In this section, we conduct simulations to demonstrate the
effectiveness of the proposed method. We consider a linear

system (1) with A =

[
1.05 0

1 0.9

]
, C = I, Q = I and R = 0.8I,

where I is the 2-by-2 identity matrix. The sensor samples the
system every Ts = 1 second and the transmission time of each
measurement packet is tx = 50ms. The estimation performance
requirement is set as P̄ = Ȳ(0.7,6), where Ȳ(γ,n) is defined in
Lemma 1.

A. Single-Channel Scenario

For the channel under consideration, we assume its band-
width W = 2MHz and noise power σn = 1mW. The signal-
to-noise ratio of the signal received by the sensor during the
channel’s busy periods is −3dB. We adopt the Poisson channel
model as described in Section III-B1 with the average channel
busy and idle rates α = 5 and β = 30, respectively. The sensing
parameter εd = 1.2, the maximum sensing time is τ̄ = 250 units
with the unit channel sensing time as 0.1 ms. The per-second
energy cost of sensing and transmitting is es = etx = 100 unit.

Fig. 5(a) shows an example trace of the estimation error
covariance along time, where the sensor conducts sensing every
step (i.e., n = 1) and the sensing time on the channel is fixed at
1 ms. The curve of E[Pk] is obtained by averaging the results
of 2000 independent simulation runs. As discussed before and
also shown in this figure, E[Pk] does not converge. However,
the figure indicates that the upper bound curve Yk is a good ap-
proximation of the long-term average of E[Pk], which justifies
the approximation method in Section IV-B.

The optimal solutions of Problem 2 are depicted in Fig. 5(b),
where we vary the channel idle probability pI by gradually
increasing β. The results show that, under a certain n, the
optimal sensing time τ∗ drops quickly as the idle probability
increases, which results in the decrease of the average energy
consumption ϕ̄. In fact, as the channel quality becomes better,
less sensor energy will be wasted for conducting sensing and
transmitting during the channel’s busy periods. Meanwhile,
when pI increases from 0.3 to 1, the optimal n increases piece-
wise, which means that the sensor conducts spectrum sensing
and packet transmission less frequently. Therefore, generally
speaking, the energy consumption decreases as pI increases.

Fig. 5. Performance in the single-channel scenario. (a) Estimation perfor-
mance over time. (b) Optimal sensing strategy.

Fig. 6. Performance of the proposed algorithm in the multi-channel scenario.
(a) Sensing time on each channel. (b) Some important variables.

B. Multi-Channel Scenario

In this scenario, the sensor data can be transmitted to the
remote estimator via one of m = 3 orthogonal channels. The
average busy and idle rates for channel CHi are αi = 5i and
βi = 30, respectively, where i = 1,2,3. All the other parameters
of these channels are set the same as those in the single-channel
scenario above. To run the proposed OSSA algorithm, we set
Kmax = 200, κmax = 20 and ζ = 0.94 [38].

Fig. 6 demonstrates the performance of the proposed algo-
rithm OSSA. First, the two figures confirm the convergence of
our algorithm. As µt changes according to (39), L(µt) increases
as expected from (37). Consequently, the objective function
J decreases and finally converges to a steady value as the
optimization process evolves. Similar behavior can be observed
in Fig. 6(a). Our simulation results indicate that the optimal
channel scanning strategy is always in the order of CH1,CH2

and then CH3, which is the same as the decreasing order of
the channel quality measured by the idle probability pI (we
have pI,1 = 85.7%, pI,2 = 75% and pI,3 = 66.7%). In fact, as
can be seen from the two figures, τi is relatively small, which
makes the term H in (40) approximately become µ

pc,i
ptx,i

. Based
on Theorem 2, the optimal order is then roughly determined
by pc,i

ptx,i
, which can be viewed as the conditional probability

that a transmit attempt results in a collision. In this case, a
channel with better quality will have lower conditional collision
probability and subsequently lower value of H , and hence
should be sensed first according to Theorem 2.

The optimal solutions with the proposed algorithm are
demonstrated in Figs. 7 and 8. In Fig. 7, we compare the
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Fig. 7. Optimal solutions by OSSA with respect to etx/es where es = 100. (a)
Sensing time under OSSA. (b) Sensing time under OSSA4. (c) Sensing time
under OSSA5. (d) Performance comparison.

performance of OSSA with its two variants OSSA4 and OSSA5

(which runs OSSA under a fixed n. n = 4 and n = 5 for OSSA4

and OSSA5, respectively). Firstly, the comparison in Fig. 7(d)
shows that OSSA4 (or OOSSA5) achieves almost the same
performance as OSSA if the optimal n obtained by OSSA is
4 (or 5); otherwise, OSSA outperforms the two variants, which
to some extent justifies the optimality of OSSA. Secondly, as
etx/es becomes larger, i.e., the transmission energy becomes
to dominate the total energy ϕ̄, the sensor intends to transmit
data less frequently (i.e, to use larger n) to save energy. This
requires each transmission to be more reliable to still satisfy the
estimation performance constraint. The reason is that, based on
Lemma 1, an increase of n requires to increase γ to maintain
Ȳ. As a result, increasing γ means the amount of energy waste
due to collisions can be reduced, which saves the total energy
expenditure. Therefore, under all these three algorithms, when
etx/es increases, the sensor will use a larger n and spend more
sensing time to increase the sensing accuracy, which are clearly
demonstrated in Fig. 7.

We show by Fig. 8 that using more channels can improve
the system performance. Here we assume different settings
of the channels: the average busy and idle rates for CHi are
αi = 5+ i and βi = 30, respectively, where i = 1, . . . ,6. As the
number of available channels increases, the sensor tends to use
more channels, and the optimal sensing order always follows
the order of CH1,CH2, . . . ,CHm. As explained before, since n∗

increases from 2 to 4 as m changes from 1 to 3, the sensor will
spend more sensing time on each channel, as shown in Fig. 8(a).
When n∗ stays at 4 and m ≥ 3, the sensors try to save both
sensing and transmission energy by appropriately allocating
sensing time on each channel. Specifically, as m increases by
1, the old channels will be sensed with slightly shorter time
to save sensing energy, while the new one with lowest quality

Fig. 8. Solutions by OSSA with respect to number of available channels.
ϕ̄tx and ϕ̄s are the average transmission and sensing energy expenditure,
respectively. (a) Sensing time. (b) Energy consumption.

Fig. 9. Algorithm running time.

will be sensed a long time to improve the sensing accuracy
on it and thus save transmission energy. From Fig. 8(b), we
observe that the average energy consumption of the sensor
decreases as m increases; however, the amount of decrease
becomes unnoticeable as m ≥ 4, which suggests that we only
need a limited number of channels to (roughly) achieve the
optimal goal.

The running time of the proposed algorithm is characterized
by many parameters such as the number of channels m, the
number of annealing processes (i.e., Kmax) and the length of
each annealing process (i.e., κmax). As shown in Fig. 9, with
fixed Kmax and κmax and when the number of channels m is
small, the running time is roughly linear to m. For a large m,
as discussed in Remark 3, the computation complexity of each
iteration of the proposed algorithm is O(m logm). If we fix the
number of iterations, the total running time of the proposed
algorithm will also be O(m logm).

VII. CONCLUSION

We have studied the energy-efficient spectrum sensing prob-
lem for remote state estimation over multiple wireless channels.
We formulated it as a mixed integer nonlinear program and
proposed a simulated annealing based optimization algorithm
OSSA which jointly addresses the problems such as when
to perform sensing, which channels to sense, in what order
and how long to scan each channel. Simulation results show
that OSSA can achieve the optimal goal and balance between
sensing energy and transmission energy expenditure. Specifi-
cally, as the transmission energy becomes dominant over the
sensing energy, the sensor will conduct sensing less frequently
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but use longer sensing time to increase the sensing accuracy,
reduce energy waste due to collisions and hence save total
transmission energy. We also demonstrated that the overall
performance is improved by introducing more channels, though
the improvement becomes less significant as the number of
channels continues to increase.

APPENDIX

A. Energy Detection

By integrating the received signal from a channel in a pre-
defined bandwidth W over the sensing period τ, the sensor gets
the detected energy, denoted by Ed , and compare it with a pre-
defined threshold, say Eth, to decide whether the channel is
currently busy or not. In this case, the sensing result can be
denoted as

sc =

{
1, if Ed > Eth,
0, otherwise.

When the channel is idle, the detected energy follows a
Gaussian distribution as Ed ∼ N (Nσ2

n,Nσ4
n), where N is the

number of samples. σ2
n and σ2

s are the variances of the chan-
nel noise and received signal from the channel, respectively.
According to Nyquist sampling theorem, the sampling rate
should be at least 2W , where W is the bandwidth of the
channel. Thus, we just assume the sampling rate be 2W and that
N = 2τW . Reasonably and for simplicity, we also assume that
Eth = εdNσ2

n = 2εdτWσ2
n, where εd > 0. Notice that, since Ed is

random, the outcome sc may be different from the true channel
state. The correct detection probability pd can be obtained
straightforward as follows:

pd =P[Ed < Eth|channel is idle]

=1−P[Ed > Eth|channel is idle]

=1−Q

(
Eth −2σ2

nτW

2σ2
n

√
τW

)

=Q
(
(1− εd)

√
τW

)
.

Similarly, Ed ∼ N (2τW (σ2
s + σ2

n),2τW (σ2
s + σ2

n)
2) when the

channel is busy. We can obtain p f as in (9), where ε f = εd/

(1+ σ2
s

σ2
n
).

B. Proof of Theorem 1

Consider the schedule Θn. According to (17), we have

Pki−1 =APki−2AT +Q = . . .

=An−1Pki−1

(
AT )n−1

+
n−2

∑
t=0

AtQ
(
AT )t

. (42)

Substituting the above equation into (16) and taking expecta-
tion at both sides yield that

E[Pki ] =(1− γ)

[
An

E[Pki−1 ]
(
AT )n

+
n−1

∑
t=1

AtQ
(
AT )t

]

+Q+ γAE[ϒki−1]AT . (43)

Since n is finite, according to (42), we can easily verify that
the stability of {E[Pk]} is equivalent to that of {E[Pki ]}. Thus,
we only need to prove the stability of {E[Pki ]} where {ki}
indicates the channel sensing steps. Then, according to (43),
due to the finiteness of n and ϒki−1, there must exist a matrix
M̄ ≥ Q such that

(1− γ)An
E[Pki−1](AT )n +Q

≤ E[Pki ]≤ (1− γ)An
E[Pki−1](AT )n + M̄.

Based on the stability of Lyapunov functions, we know that
(18) is both sufficient and necessary for the stability of both
the lower and upper bound sequences above. Therefore, (18) is
both sufficient and necessary for the stability of {E[Pk]}, which
completes the proof of this theorem.

C. Proof of Lemma 1

Consider the subset {Yki |θki = 1}. Suppose Yki = g(Yki−1).
Similar to (43), we have

g
(
Yki−1

)
=(1− γ)

[
AnYki−1

(
AT )n

+
n−1

∑
t=1

AtQ
(
AT )t

]

+Q+ γAϒ̃ki−1AT , (44)

ϒ̃−1
ki−1

=

[
An−1Yki−1

(
AT )n−1

+
n−2

∑
t=0

AtQ
(
AT )t

]−1

+CT R−1C.

Since ϒ̃ki−1 is bounded, the sequence {Yki} is stable if and only
if condition (18) is satisfied. Below we show that it converges
to a unique value.

First, (44) indicates that g(·) is an increasing function. Sup-
pose the initial value is Y0 = P0 = 0. By induction, we can see
that {Yki} is increasing and finally reaches a steady value, say
Ȳ0, since the sequence has already been proved stable. In other
words, Ȳ0 is the fix point of the iteration (44), i.e., Ȳ0 = g(Ȳ0).

Next, ∀Y0 > Ȳ0, since g(·) is increasing, by induction, we
always have Yki > Ȳ0. Let us introduce a useful inequality
as below. Let R̃ = CT R−1C,Q̃ = ∑n−2

t=0 AtQ(AT )t ,Z1,Z2 be
four positive definite matrices of compatible dimensions with
Z1 > Z2. We have[

R̃+(Z1 + Q̃)−1]−1 −
[
R̃+(Z2 + Q̃)−1]−1

=
{[

R̃+(Z1 + Q̃)−1]−1 [
R̃+(Z2 + Q̃)−1]− I

}

×
[
R̃+(Z2 + Q̃)−1]−1

=
[
R̃+(Z1 + Q̃)−1]−1 [

(Z2 + Q̃)−1 − (Z1 + Q̃)−1]
×
[
R̃+(Z2 + Q̃)−1]−1

=
[
R̃+(Z1+Q̃)−1]−1

(Z1+Q̃)−1 [(Z1+Q̃)−(Z2 + Q̃)
]

× (Z2 + Q̃)−1 [R̃+(Z2 + Q̃)−1]−1
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=
[
(Z1 + Q̃)R̃+ I

]−1
(Z1 −Z2)

[
R̃(Z2 + Q̃)+ I

]−1

<
[
(Z2 + Q̃)R̃+ I

]−1
(Z1 −Z2)

[
R̃(Z2 + Q̃)+ I

]−1
, (45)

where I represents identity matrices of compatible dimensions.

Define F̃ =
[(

An−1Ȳ0(AT )n−1 + Q̃
)

R̃+ I
]−1

An−1. Based on
the above inequality and the fact that Yki > Ȳ0, we get

Yki+1 − Ȳ0 = g(Yki)−g(Ȳ0)

=(1− γ)An(Yki − Ȳ0)
(
AT )n

+ γA
[
ϒ̃ki − ϒ̃(Ȳ0)

]
AT

<(1− γ)An(Yki − Ȳ0)
(
AT )n

+ γAF̃(Yki − Ȳ0)F̃T AT

Δ
=F (Yki − Ȳ0).

where the above inequality can be verified by substituting Z1 =
An−1Yki−1 and Z2 = An−1Ȳ0(AT )n−1 into (45). With the newly
defined matrix F̃, we can obtain another property of Ȳ0 as below.

F̃Ȳ0F̃T =
[(

An−1Ȳ0
(
AT )n−1

+Q̃
)

R̃+I
]−1

An−1Ȳ0

×
(
AT )n−1

[
R̃
(

An−1Ȳ0
(
AT )n−1

+ Q̃
)
+ I
]−1

= ϒ̃(Ȳ0)
[
An−1Ȳ0

(
AT )n−1

+ Q̃
]−1

An−1Ȳ0

×
(
AT )n−1

[
An−1Ȳ0

(
AT )n−1

+ Q̃
]−1

ϒ̃(Ȳ0)

< ϒ̃(Ȳ0)
[
An−1Ȳ0

(
AT )n−1

+ Q̃
]−1

ϒ̃(Ȳ0)

< ϒ̃(Ȳ0)

{
R̃+

[
An−1Ȳ0

(
AT )n−1

+ Q̃
]−1

}
ϒ̃(Ȳ0)

= ϒ̃(Ȳ0).

Then, based on (44), it is easy to see that Ȳ0 = g(Ȳ0)> F (Ȳ0).
According to Lemma 3 in [5], the iteration Yki+1−Ȳ0=F (Yki−
Ȳ0) converges to 0, which means that {Yki} converges to Ȳ0.

For any Y0<Ȳ0, Yki is always bounded within [Yki
,Ȳki], where

{Yki
} and {Ȳki} are sequences evolving according to (20) with

initial values 0 and Ȳ0, respectively. Since we already show
above that the two sequences converge to Ȳ0, {Yki} also con-
verges to Ȳ0. In other words, limi→∞ Yki =Ȳ0 regardless of Y0.

Finally, consider the whole consequence {Yk}. With
limi→∞ Yki = Ȳ0, ∀ j ∈ {1, . . . ,n− 1}, the sequence {Yki+ j =

A jYki(A
T ) j + ∑ j−1

t=0 AtQ(AT )t} also converges to a unique

value Ȳ j = A jȲ0(AT ) j +∑ j−1
t=0 AtQ(AT )t . Therefore,

lim
L→∞

1
L

L

∑
k=1

Yk =
1
n

n−1

∑
j=0

Ȳ j
Δ
= Ȳ(γ,n).

Moreover, based on (44), we can conclude that Ȳ j and also
Ȳ(γ,n) are monotonically decreasing as either γ increases or
n decreases.
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