
15370 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Energy-Efficient Massive MIMO With Decentralized
Precoder Design

Shuai Zhang , Student Member, IEEE, Bo Yin , Member, IEEE, Yu Cheng , Senior Member, IEEE,
Lin X. Cai , Senior Member, IEEE, Sheng Zhou , Member, IEEE, Zhisheng Niu , Fellow, IEEE,

and Hangguan Shan , Member, IEEE

Abstract—This paper presents an energy-efficient downlink pre-
coding scheme in a multi-cell Massive MIMO system. We approach
the precoder design problem to maximize the system energy effi-
ciency by jointly considering power control, interference manage-
ment, antenna switching and user throughput in a cluster of base
stations. This is computationally difficult as it requires solving a
sparsity-inducing non-convex optimization problem, which is NP-
hard. To alleviate the solution complexity, first a stochastic smooth
approximation of zero-norm is applied in the antenna power man-
agement to enable fast, gradient-based algorithms. For efficient
convergence, we develop a novel optimization algorithm combining
augmented multiplier (AM) and quadratic programming (QP), and
show how this scheme permits decentralized implementation by
offloading parts of the computation to the individual base stations to
reduce communication overhead. We provide theoretical proof that
the proposed algorithm converges both locally and globally under
realistic assumptions. Numerical results confirm that our method
achieves higher energy efficiency with a superior convergence rate
compared to different types of existing methods, and illustrate the
relationship between energy efficiency performance and system
design parameters.

Index Terms—Massive MIMO, 5G, beamforming, energy-
efficiency, distributed optimization.

I. INTRODUCTION

THE central theme in developing the next generation mobile
communication system is the drive for higher data rate

at lower energy consumption. Today’s communication system
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designer must be aware of both the throughput performance as
well as the corresponding power cost, and as a result Energy
Efficiency (EE) has become an important metric for network
evaluation and optimization [1]–[3]. EE is defined as the ratio
of the achieved throughput (in bits/s) to the corresponding
power consumption in Watts. It is a direct measurement of how
efficiently the system transports bits of information, and can be
used as a guideline for system optimization.

To push the boundaries of a high-EE operating regime,
massive MIMO is a technology under active development for
5G New Radio [4], the radio access standardization for the
fifth-generation mobile networks. Its feature is by using an
excessive number of base station (BS) antennas, typically an
order of magnitude higher than the number of served users, to
achieve an aggressive diversity gain. This is made possible by
two beneficial properties, favorable propagation and channel
hardening: as the number of BS antennas increases, the channels
of different users become increasingly close to its expectation
and orthogonal to each other [5]. Consequently, adverse effects
like fading, intra-cell interference and uncorrelated noise can be
mitigated with simple signal processing techniques like linear
precoding, i.e., constructing the signal on each transmit antenna
as a weighted combination of the signals for different data
streams, when there are sufficiently many antennas. According
to the theoretical analysis [5], a system with M antennas and K
users (M � K) could achieveO(M) gain in effective signal-to-
noise-ratio (SNR), indicating achievable equal throughput with
only 1/M power consumption compared to the single-antenna
system.

On the other hand, this kind of configuration necessarily
requires the deployment of a large number of antennas and the
corresponding radio circuits, which is considered to be ineffi-
cient energy-wise and could affect the practicality of deploying
massive MIMO systems. This issue has spurred a large body of
research work to improve the system energy-efficiency despite
using many antennas [6].

There are proposals to use a hybrid precoding scheme consist-
ing of both digital and analog precoders to reduce the number of
transceiver chains needed [7]. The signal is first passed through
a digital precoder where its phase and amplitude are adjusted,
and then analog phase shifters, which can be shared by more
than one data streams, are applied to provide the additional
changes in phases; because the number of data streams after
digital processing can be smaller than the number of transmit
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antennas, less full-scale transceiver chains are needed, and phase
shifters naturally integrate into the following RF up-conversion
with little additional overhead, thus saving hardware cost and
less operation power. The drawback is that hybrid schemes suffer
from a low degree-of-freedom, limiting the potential diversity
gain from using massive MIMO. Moreover, the interference
between users, introduced through either sharing or hardware
imperfections, is non-negligible and deteriorates system perfor-
mance. In this paper we do not consider a hybrid scheme due to
these concerns, and there is evidence to suggest that the concern
for transceiver chain cost may be exaggerated, as demonstrated
by a recent implementation of a massive MIMO platform with
100 digital transceiver chains built with ordinary equipment [8],
since each antenna element in the massive array can have relaxed
requirements.

There are also works from the signal processing aspect of
the problem. Since in today’s communication systems there
are increasingly more interacting subsystems, it is not imme-
diately obvious whether previously proposed signal processing
schemes, aiming to achieve either high system throughput or
low power, can still work under high EE requirements. With the
recent addition of machine learning techniques as reported [9],
[10], it is still common to follow the network utility optimization
path: how to maximize EE when the scenario is constrained
by quality-of-service (QoS) requirements and power limits, or
maintaining a certain level of fairness among users and base
stations (BSs) as reported in [11]–[13].

The gain in EE would even be greater if Massive MIMO is
combined with small cell deployment or network densification
techniques [14]. Facing the pressure of denser deployment to
satisfy the 5G network capacity demands, small cells is seen
as a feasible solution. As shown by information theoretical
analysis [15], smaller cell size and higher BS antenna count
can both contribute to higher throughput. A typical example
of it is Heterogeneous Networks (HetNet): a central master
base station (MBS) provides coverage for a macro cell, and
within it many small base stations (SBSs) form their own small
cells as an underlay. Such an architecture is especially useful in
densely populated urban areas, where a large part of the traffic
comes from confined areas with high traffic called hotspots. A
central BS may not be able to provide satisfactory QoS in an
energy-efficient manner, due to either congestion, interference
or unfavorable channels. In this case, small cells not only offload
part of the traffic, but also reduce the power requirements for
MBS because of geometrical proximity to the users. In order
to take full advantage of such a heterogeneous setup for high
QoS provisioning or energy efficiency, it is important to coor-
dinate the BSs and optimize the resource allocation in HetNets
[16]–[18]. For example, when the SBSs make use of the same
frequency resource, the inter-tier interference can be significant;
due to their small sizes users in small cells are more likely to
suffer from inter-cell interference (ICI) [19], [20].

Based on these points, we study the digital precoder design
problem maximizing the EE, in the scenario of a cooperating
Massive MIMO-enabled small cell BS cluster. We propose
a framework which jointly considers factors including power
control, BS antenna switching and interference, conventionally

solved as separate problems. Towards this end we show that an
efficient and distributed algorithm can be applied to solve the
problem.

The main contributions of this paper can be summarized as
follows:

1) We consider the downlink transmission of multiple mas-
sive MIMO BSs, particularly the SBSs in a cooperative
cluster. They jointly determine their power control, pre-
coding vectors and BS antenna switching to achieve high
system EE. We show that it is a general sparsity-inducing
non-convex problem with a separable structure, which
is considered an NP-hard problem to solve for a global
solution.

2) We leverage the separable structure to transform the prob-
lem so that it can be solved in a decentralized manner.
We show the series of transformations needed to arrive at
the iterative algorithm combining features from Newton’s
method and the augmented multiplier method. We prove
that the proposed method is convergent when the initial
solution is sufficiently close to the optimal point, and then
give additional steps to guarantee convergence no matter
where the initial point is.

3) We present numerical results to demonstrate the effec-
tiveness of the proposed algorithm, both in terms of
convergence speed and achieved energy efficiencies, un-
der different system parameters, with results from other
schemes for comparison. Some useful conclusions for
system deployment can be learned from the results.

Organization and Notation: The remainder of the paper is
organized as follows. Section II introduces the more current state
of this area of research. Section III states the system model and
problem formulation. In Section IV the motivation, derivation
and analysis and the transformation of the problem needed are
given. Section VI presents the numerical results for performance
evaluation and comparison with other methods. Section VII
concludes the work and gives additional remarks. Mathematical
notation note: in this paper we use calligraphic letters (A) for
sets, capital letters (A) for the set cardinality and corresponding
lower-case letter as a specific member of the set (a ∈ A). Bold
letters denote a vector or matrix, and brackets with subscript
means a set formed by enumeration, e.g. {xb}b∈B is a set of
all xb when b ranges from the set B. ◦ denotes element-wise
product.

II. RELATED WORK

The precoding process refers to the scaling and phase chang-
ing manipulation of transmitting signals such that the received
signals could have desired properties. Massive MIMO is a
natural extension of the Multi-User MIMO, where the massive
number of antennas can only be put to use when precoding
vectors are properly selected for a system design goal. The
original paper [5] gives a closed-form expression to the key
system performance metric and discusses the choice of key
system parameters like the antenna and user number. Based on
those, there have been many works on the design guidelines
to optimize system performance metrics [21], [22]. However,
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those results assume certain kinds of precoding schemes and
the problem of designing an energy-efficient system when pre-
coding scheme is also considered has yet to receive enough
attention. The mainstream approach is linear precoding, which
calculates the coefficients for linear combination at the receiver,
for example zero-forcing, and signal-to-leakage-and-noise-ratio
(SLNR). They are cheap to implement at the cost of sub-optimal
system throughput. One thread of research is to extend these
results to multi-cell scenarios and distribute the computation;
however many do not consider the energy implications and could
be operating in the low EE regime. Also a central controller
which is assumed to have channel-state information from the
BSs could bring high communication and processing overhead
which could result in hidden energy costs; another related, but
a different approach is to maximize the minimum SINR with
power constraints. While easier to solve, these problems often
share the drawbacks of not adapting to the current traffic: the
constraints need to be reset and found by hand or another process
in order to operate efficiently.

For advanced convex optimization techniques in the multi-
agent setting, currently the most popular method is the Alter-
nating Direction Multiplier Method (ADMM). In [23] ADMM
is used in combination with semidefinite Relaxation to solve
the coordinated beamforming with uncertainties modeled as
ellipsoids in the CSI for throughput gain. The authors of [24]
further extend the work to consider a general form of CSI
uncertainties that gives closed-form solutions in the strongly
convex cases. However they invariably need to rely on the usage
of Semidefinite relaxation, which ignores one of the matrix
rank constraints in order to readily apply ADMM. A joint
solution regarding BS clustering and beamforming is given in
[25]. [26] provides a general framework for using the primal-
dual perturbation method, which can be seen as a version of
the multiplier methods for optimization that has involved and
coupled constraints. Another good introduction of the ADMM
algorithm use in wireless networks is presented in [27], which
gives the result of how to obtain an infeasibility certificate and
speed-up tricks. Yet they all have to either model the problem
in the convex form, which is limiting for EE design goal, or use
convex approximation at local iterations, incurring additional
complexity. Another important mathematical tool to deal with
CSI uncertainty is random matrix theory, where the linear pre-
coders could be adapted to the stochastic forms according to
the level of available channel knowledge. While providing a
low-cost computation with reasonable performance, the draw-
back in this approach is that they need to be built on existing
assumptions on the modeled system, e.g., the used precoding
scheme, knowledge on the channel state, making their results
dependent on the system specification and lacking the ability to
generalize.

III. SYSTEM MODEL AND FORMULATION

A. System Model

We consider a Massive MIMO network deployed in a two-tier
HetNet topology, with a macro-cell covered by MBS and small
cells of SBSs on top of it, as illustrated by Fig. 1. MBS also acts

Fig. 1. The system diagram of the scenario under consideration.

as a central controller where the inter-cell coordination takes
place. There is a set of BSs B = {0, 1, · · · , B}, with MBS as
the 0-th one, and the other B SBSs. Each BS b ∈ B is equipped
with M antennas and associated with K users, and the sets of
antennas and users are denoted Ab and Ub. Note that treating
the number of users per cell as uniform is done for the clarity of
presentation and analysis rather than as a requirement in order
to apply the proposed method. Our solution does not operate on
the assumption that each cell must contain an equal amount of
user equipment, and can be applied on problems with a varying
number of users per cell.

The system works in a static time division duplex (TDD)
manner for the up- and down-link so that the CSI estimation from
the uplink transmission can be used in the downlink. During
one coherence block, the channel is considered flat, and we
denote the channel state between BS b to the k-th user associated
with BS b′ as hbb′k ∈ C

M , drawn from a circularly-symmetric
normal distribution CN(0,Rbb′k), where the Hermitian matrix
Rbb′k ∈ C

M×M is the channel correlation characterizing the
spatial correlation between the base station antennas. Unless oth-
erwise noted, the channel correlation is generated with Rbb′k =
βbb′kIM , with βbb′k modeling the large-scale fading determined
mainly by environment parameters and user locations, and I is
an identity matrix of rank M .

With linear precoding, wb,k ∈ C
K are the precoding vectors

used by BS b intended for transmission to its own user bk.
Each user receives the signal with an additive noise denoted by
nbk. The signal sb,k ∼ CN(0, 1) is assumed to be drawn from
a Gaussian code book, and the received baseband equivalent
signal of an SBS user can be expressed as

ybk = hH
bbkwbksbk +

∑
i�=k,i∈Ub

hH
bbkwbisbi

+
∑
i∈B\b

hH
ibk

∑
j∈Ui

wijsij + nbk. (1)

The received signal is the sum of useful signal power, the intra-
cell interference from users in the same cell, and all SBS users’
signals are treated as the inter-cell interference plus receiver
noise.

From the signal models, the corresponding receiver signal to
interference plus noise ratio (SINR) and the achievable rate of
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user k in cell b occupying bandwidth B follow:

SINRbk =
|hH

bbkwbk|2
Ibk +Nbk

(2a)

Ibk =
∑

i�=k,i∈Ub

|hH
b,bkwbi|2 +

∑
i∈B\b

∑
j∈Ui

|hH
i,bkwij |2 (2b)

rbk = B log(1 + SINRbk) (2c)

where Ibk is the interference power expressed as the sum of
intra- and inter-cell interference, and Nbk is the noise power of
the user across the used spectral band.

B. Power Model

The power of a Massive MIMO BS should be modeled in
a way that reflects the real-world operating costs. A simplified
model where the amortized power level decreases to zero as the
number of antennas goes to infinity is unrealistic in EE analysis,
since the diminishing return of SE and non-linear increase in
system power cost are not considered. To remedy this, the BS
power consumption is modeled as a sum of dynamic and static
components. The dynamic power is largely due to the radio
transmission activity, directly controlled by the precoding vector
used. It also considers the power spent on signal processing,
treated as a linear function of the achieved cell throughput [28].
It encompasses the power used to encode and decode symbols,
estimate channels and calculate necessary control signals as well
as the backhaul transmission costs.

The static power models the overhead for cooling and hard-
ware basic operating power consumption. It is the sum of a
constant term and a linear function of the number of active
antennas, which is determined during the precoding calculation.
This is to encourage the BS to use less antennas whenever
possible to improve the overall energy efficiency.

In summary, the total power consumption by a base station b
is:

Pb =
∑
k∈Ub

||wbk||22︸ ︷︷ ︸
radio trans.

+NbPant︸ ︷︷ ︸
antenna

+
∑
k∈U

rbk · PSP-Unit︸ ︷︷ ︸
signal proc.

+Pfixed,

(3)
whereNb is the number of active antennas with the constantPant

the power cost per antenna; Pfixed is the constant term for other
power consumption and rk is the data rate for the k-th user in
the current cell; PSP-Unit is the signal processing power per unit
data flow.

C. Sparse Solution

Since the base station power constitutes almost 60% of all
power usage in a communication system, and the majority
of them is dedicated to radio circuits, it is necessary to try
to find precoding vectors that utilize few antennas when it is
feasible, e.g., when the QoS requirements are satisfied in low
data-demand scenarios. Although this may contradict with the
main features of Massive MIMO, whose gain results from adding
BS antennas to maximize the utilization of degree-of-freedoms
available in the channel, it could be beneficial to turn off the

excess antennas when high throughput is less important than
energy saving. In terms of optimization this could translate into
a penalty term that measure the sparseness of the solutions.

The optimization problem combining constraints on sparsity
has been explored, e.g. in [29]. Optimally, antennas which
when put together do not improve diversity gains should not
be selected. From this starting point many reported heuristics
base their calculation on the channel correlation [30], or in the
simple case select those with the strongest channel. However,
it remains to be seen if there is a way to directly calculate a
good subset of antennae for transmitting in a real-world setting,
because the problem is a combinatorial programming known to
be NP-hard. This class of sparse solution problems finds many
uses in classification, machine learning and signal processing.
One common way of approximating this problem is to use L1

norm, because it is equivalent to L0 asymptotically in the high
dimension regime.

If we stack the K M -dimensional precoding vectors as Wb,
the number of active antennas Nb, as appeared in Fig. 3, is
equal to the number of non-zero column vectors in the precoding
matrix Wb:

Nb(Wb) = ||diag(WH
b Wb)||0, (4)

where || · ||0 is the number of non-zero elements in a vector and
diag operation takes the diagonal elements from a matrix to form
a vector. Such an addition is by no means trivial; it forces the
solved solution to have group sparsity in the precoding vectors.
L0 norms as constraints essentially transform the original prob-
lem to a combinatorial optimization — since it is reducible to
solving a OPTIMUM SUBSET problem, which is of NP-hard class.
Moreover, its presence is troublesome for numerical algorithms
as it is not differentiable: this results in searching in a discrete
space and often inefficient. In this paper, we consider a smooth
transformation of the problem to enable the use of gradient-based
methods.

D. Problem Formulation

With the above models, we state the problem under consider-
ation. The goal is to maximize the SBS EE within a BS cluster
B by choosing the optimal precoding vectors {wbk}bk for all b
and k, given the channel states h.

Since each BS can have its own EE, we scalarize the objective
with a utility functionU : RB �→ R. We consider the summation
of the individual EE for illustration, although as long as it is twice
differentiable with a separate structure: U(η) =

∑
b Ub(ηb) the

following analysis still applies. Constraints (5b) requires that
individual user rates need to be larger than a fixed lowest value
r, which is considered a minimum to maintain any meaningful
level of service quality. Equation (5c) provides a hard limit on
the total power per BS, denoted as P̄BS . Then the problem is
expressed as:

maximize
w

U(η) =
∑
b∈B

ηb =
∑
b∈B

∑
k∈Ub

rbk

Pb
(5a)

s.t. rbk ≥ r ∀b, k (5b)
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Pb ≤ P̄BS ∀b (5c)

Eqs. (2) to (4) ∀b, k, (5d)

where the sparseness term is contained implicitly in Pb.
It may be argued that another important technique user asso-

ciation should also be used for improved efficiency, because it
is likely that base stations could choose to only serve users with
good enough channel conditions and therefore do not need to
overly compensate for users with poor channels.

However, we find that including it typically involves knowing
the channel condition between a given user and potential base
stations. This is not compatible with our goal here, because we
intend to use decentralized update algorithms to cut down the
amount of information needed. In our current algorithm, each
cell do not need to know the channel conditions between its user
and out-of-cell users.

Moreover, given the settings used in the paper, the antennas
and associated RF components constitute a significant portion
of the power budget, and a large part of that is contributed by the
static components. This means power savings from differently
associated users is not as great as switching some of them off.
Based on these concerns and limited space, in this article we
consider antenna selection as a more effective component in
achieving higher system energy efficiency and do not include
other techniques.

IV. DECENTRALIZED PRECODING ALGORITHM

The problem in its current form cannot be solved efficiently
with existing numerical techniques. The technical difficulties are
two-fold, namely,

1) the objective function and the constraint functions are non-
convex and involve integer variables;

2) the interference calculation requires the central controller
to obtain and operate on a large scale matrix.

To deal with these issues, we transform the original problem
in Eq. (5) with the following steps.

A. Auxiliary Variables for Constraints

Auxiliary variables are introduced to act as the upper and
lower bounds in the original non-linear equality constraints.
The purpose of this step is to eliminate the non-linear equality
constraints, because even when the non-linear functions are
convex, equality constraints containing them cannot be convex;
hence it is necessary to put them into inequality forms; also
this step reduces the amount of coupled terms between the
constraints such that it is easier to analyze and solve with existing
algorithmic frameworks. This is done by using the following
auxiliary variables. Specifically, for all base stations indexed by b
and users indexed by k, tbk is an upper bound of the interference
power received by user k in cell b, ξbk and ζbk are a lower and
an upper bound of user spectral efficiency; Pb is an upper bound
of base station power and etab is a lower bound of its energy
efficiency.

With Proposition 1, one can see that at optimum such inequal-
ities will all turn to equalities. However, the constraints that
come with the non-convex, non-smooth terms are still present

and needs to be treated in the algorithm development.

minimize
w,ρ,P̂,t,ξ,ζ,s

−
∑
b∈B

ηb (6a)

s.t.
∑
k∈Ub

ξbk ≥ P̂bρb ∀b (6b)

Ibk +Nbk ≤ tbk, ∀b, k (6c)

|hH
b,bkwbk|2 ≥ sbktbk, ∀b, k (6d)

ζbk ≥ log2(1 + sbk) ≥ ξbk, ∀b, k (6e)∑
k∈Ub

||wbk||22 +NbPant + Pfixed

+
∑
k∈Ub

ζbk · PSP-Unit ≤ P̂b ∀b (6f)

P̂b ≤ P̄BS (6g)

ξbk ≥ r (6h)

Proposition 1: Problem (6) has the same optimal solution to
problem (5).

Proof: If the constraints with newly added variables are equal
at optimum, we can easily check that it is equivalent to any
optimum of the Problem (6). Then by contradiction one can see
that these constraints cannot possibly take strict inequality signs
at optimum. For example, if Eq. (3) were to take strict less than,
then one can choose a lower value for P̂b such that equality
is assumed, without violating other constraints. Moreover, with
smaller P̂b, the lower bound ρb can be increased which leads
to a lower objective. The same arguments can be made for all
newly modified constraints, because any strict inequality would
result in “free lunch”, the adjustments that do not violate existing
constraints and improve the objective values. Hence we can say
that these constraints must be equal at optimum, at which point
it is the same as the problem before the transformation. �

B. Approximately Optimize Antenna Activation

For optimizing the antenna selection in this manner there
are methods, e.g., the typically used branch-and-bound[31].
Alternatively, one may use a greedy-based heuristic antenna
selection procedure first for picking out a reasonably good
subset. Here we propose to use a smoothing approximation
to include antenna selection into our algorithmic framework,
which incurs a lower complexity and naturally lends its form to
gradient-based methods.

This method is inspired by a common approach in integer pro-
gramming randomized rounding. By this approach, to solve an
optimization problem with integer variables, first these integer
variables are relaxed into continuous variables and a continuous
solution is obtained. Then according to certain rules, the relaxed
variables are turned into integers. For a certain class of problems,
there are theoretical guarantees [32] on the performance of
randomized rounding. In principle, what we have done is to
relax the integer variables into expectations of a distribution.
The distribution is designed in a way such that it leans towards
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Fig. 2. The Concrete Distribution when α = 1 and β takes different values.
Notice the similarity with Bernoulli distribution when β is close to 0.

taking values close to 0 or 1, which facilitates the rounding. This
approach has been used by work in other fields such as machine
learning to learn a sparse model structure [33].

The key observation towards making such an approximation
is to associate all antennas j in the BS b with random variables
π = {πmb}b∈B,m∈Ab

, which may be called “switch variables”
and take on values in [0,1]. The precoding vector for user k
in BS b changes from wbk = [wbk,1 wbk,2 · · ·wbk,Nb

]T , where
elements wbk,j are signal weight for one antenna j for BS
user bk, to [wbk,1πb1 wbk,2πb2 · · ·wbk,|Ab|πb,|Ab|]

T . Notice that
switch variables ζ are set per BS antenna and is the same across
the users.

We can still see that the new precoding vector expression
is connected to the original problem: if the πb takes value 0
with high probability for some of its antennas more than other
antennas, then we can see that it means the sparse solution is to
set those precoding values wbk,j to zero. The natural candidate
is to model ζ as binomial random variables, and tweak the
success probability as an optimization variable; but its discrete
nature makes it hard to work with gradient methods, so instead
we consider its continuous approximation concrete distribution
[34]. This approximation is a parametric family of continuous
distributions, which are crafted to allow gradients to be derived
at points that correspond to its discrete counterparts, while
encouraging the samples’ values to be heavily distributed at 0
or 1.

The random variable associated with each base station b
can be generated by the equations Eq. (7a)–(7c), controlled by
parameters η0, η1, α and β:

π = min(1,max(0, η)) (7a)

η ∼ q

(
η − η0

η1 − η0
;α, β

)
(7b)

q(x;α, β) =
βαx−β−1(1 − x)−β−1

(αx−β + (1 − x)−β)2
(7c)

Starting from a uniform random variable from [η0, η1], we
first normalize it to [0, 1] as shown in Eq. (7b). Eq. (7c) is
the underlying distribution model used, which is a continuous
approximated version of binary Bernoulli distribution taking a
number in [0,1] as the input, illustrated in Fig. 2. The “shape”, or
how much probability is assigned to the value at two end points

is controlled by parameters α and β. This random variable is
further limited by a hard sigmoid to produce values in [0,1].
By experiment we find that it is better to have the starting
neighborhood [η0, η1] larger than [0,1], e.g. [−0.2, 1.2].

As a result, the number of active antennas in the precoding
vector is approximated by the expectation of the number of non-
zero switch values, which can be calculated from the non-zero
probability of the distribution given by Eq. (7b):

Nb ≈ E

⎡
⎣∑
j∈Ab

πbj

⎤
⎦ =

∑
j∈Ub

(1 −Q(0;αbj , βbj))

(8a)

Q(x;α, β) = Q0

(
η − η0

η1 − η0
;α, β

)
(8b)

Q0(x;α, β) = exp (β (log x− log(1 − x))− logα) /

(exp (β (log x− log(1 − x))− logα) + 1)
(8c)

where Q(x;α, β) is the CDF of random variable η in Eq.(7a).
In this way, instead of directly optimizing precoding vectors

w for sparse solutions, the distribution parameters αb,j , βb,j are
optimized such that the induced distribution would push switch
variables to 0 or 1 by the optimization process. The price to pay
is that when evaluating the gradient information of expressions
involving the precoding vector, e.g., g(w), multiple samples
must be collected and their sample mean gradient is used for
optimization: 1

S

∑S
s=1 g(ŵ ◦ π(s)), where S is the number of

samples of π and π(s) the s-th sample of π.

C. Decentralized Decision Making

With the increasing demand of data throughput, the number
of BSs in a given area increases. However, in the evaluation of
inter-cell interference Ibk, the current problem form needs to
know all the channel state information, which in total consti-
tute B ×B ×K ×M complex numbers, a highly unrealistic
demand. However, by utilizing the nature of the interference,
such complexity can be reduced by communicating only the
interference power contributed by each BS, which does not
scale quadratically with the number of base stations. It also
has the added benefit of decoupling the significant portion of
computation of optimal precoding vectors, by delegating these
parts to individual base stations and only communicate a small
amount of information at the central node.

To start, there is the assumption that each base station can
estimate the channel states with the out-of-cell users. This is
possible if the out-of-cell users transmit orthogonal pilot signals
such that channel estimation is useful. In this way each base
station is able to calculate the amount of external interference it
contributes to other cells [35], [36].

We denote ιbk as the estimated amount of interference power
the user k in BS b receives from all other base stations: ιbk =∑

b′
∑

k′ h
H
b′bkwb′k′. And the vector Ψb ∈ R

BK is defined such
that each element Ψb[i], where i = 0, · · ·BK − 1 is the index
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of a user in one of the B cells, is

Ψb[i] =

{
−ιbk if bK ≤ i < bK +K∑

k |hH
bb′k′wbk|2 if i = b′k′ for some b′ �= b, k′

(9)
ιbk represents the local version of the information that depends

on other base stations: each base station initially does not know
the exact value of ιbk’s, because it does not have the channel state
information from other cells to the users in its cell. However,
with information exchange, the ι should converge to the value
which is consistent with other cell’s contributed interference. So
an additional equality constraint is added to the problem such
that any solution found when the algorithm exits is guaranteed
make it consistent: ∑

b

Ψb = 0 (10)

This exchange and update of local information given other
BSs’ information at the central node is a consensus-form pro-
gramming step [37]. The motivation is from this observation:
the problem can be broken down into sub-problems solvable by
individual BS’s if there are no coupled constraints, where one BS
requires information from other BSs. So instead of considering
them together, it is possible to start individual solving with
inaccurate estimates of inter BS interference, and then merge the
individual solutions at the central node where other BS’s infor-
mation is available. In this transformation, the cross-interference
power terms are treated as the consensus value.

Instead of communicating all CSI information, now each BS
only transmits (Nc − 1)×K power information, which does
not scale with the massive number of antennas in our problem,
and is usually quite small.

V. DECENTRALIZED PRECODING ALGORITHM

With the above transformations, we have smoothed and de-
coupled the constraints as much as possible; all but one con-
straint are functions of individual BS’s own state lb. For clarity
of notation and the following analysis, we rewrite the problem
variables and constraints as follows:

Lb = {lb|(Constraints (6b)–(6h), (8) hold)}
lb = [wb, αb, βb, ub, vb, tb, cb, tbk, φbk, rb,Ψb]

(11)

whereLb is the feasible region of all the BS-local variables. Each
BS stores the state information lb, which will be updated in the
following iterative algorithm, containing the precoding vectors,
ICI, power and EE. The global states of the interference terms
are put in vector ι. The shorthand of the problem is then

minimize
{lb}b

−U(lb)

s.t. hb(lb) ≤ 0 ∀b (12a)∑
b

Ablb = 0 (12b)

where hb is a vector-valued indicator function whenever lb ∈
L, ∀b, and Ab in constraint Eq. (12b) serves to extract the

componentsΨb from lb, and the constraint encapsulates coupled
connection between the BSs in Eq. (10).

At this point it is tempting to apply the popular ADMM
method like stated in [23]. However given the non-convexity
of the problem, the direct application of ADMM could result
in non-convergence. To remedy this issue a widely adopted
approach, known as Successive Convex Approximation (SCA)
as reported in [38], which adds another outer loop outside
of the ADMM iterations, causing the run time complexity to
be quite high. Here we propose a novel algorithm to address
these challenges. It is a combination of both multiplier and
quadratic programming(QP) methods, which could solve a non-
convex problem to a numerical local solution at a reasonably
fast converge speed and provable convergence. Note that with
non-convex problems it is generally NP-hard to ensure global
optimality, hence in engineering problems, solutions satisfying
Karush-Khun-Tucker (KKT) conditions are considered good
enough.

We assume that the problem instances are feasible and that
the local optimum points indeed satisfy the KKT conditions. The
additional requirement is that the system utility function U(·)
can be written as a sum of the individual BS utility that only
depends on each BS’s local state information lb, i.d, U(l) =∑

b Ub(lb). The output is the local optimal point of the original
non-convex problem. During the iterations, the notations μb and
λ are used to denote the dual variables associated with the non-
convex constraints and linear equality constraints, respectively.
Notice that we also assume that low-level solvers for convex and
quadratic programming are available to a reasonable degree of
accuracy. The algorithm can be broken down into the following
major phases. Note that for notation simplicity, we omit the
iteration index and instead use l−b to denote the value of lb from
the previous iteration and l+b to denote the new, updated value
of this variable.

A. Initialize

Each BS b needs to provide an initial guess of the optimal
state variables {l(0)

b }b, and the corresponding dual variables
λ(0). This means that an initial precoding vector and user rate
and power bounds need to be generated, which can be derived
from past channel observations. The algorithm uses a few other
algorithmic parameters, including the scaling coefficient ρ > 0,
the weighing positive definite matrix Σb ∈ S

nl
+ to allow possible

base station-specific weights, and acceptable accuracy ε. These
values are set before running the algorithms and remain constant
throughout the analysis.

B. Local State Estimation

Each BS individually evaluates the sub-problem:

minimize
lb

−Ub(lb) + λ−T
Ablb +

ρ

2
||lb − l−b ||2Σb

subject to hb(lb) ≤ 0
(13)

This is solved in a distributed manner; each BS finds out what is
best for its own objective, expressed in lloc

b , given the previous
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iterate solution l−b . The corresponding dual variables for con-
straints are denoted as μb. This step generates a first estimate l̂b,
which together with other calculated results would be part of the
new solution in the next iteration. This is similar to the ADMM
algorithm, where an Augmented Lagrangian is decomposed with
respect to the individual BSs.

Note that it is not required for this step to produce an exact
solution, at the risk of losing the convergence guarantee of the
later analysis. For performance constrained base stations, the
above problem can be approximately solved.

C. Early Termination

Notice that in the previous step, only the coupled constraint
in Eq. (12b) are not enforced. So if they are satisfied, then the
solutions are indeed the KKT points to the original problem. As
a result the termination conditions verify if the affine constraints
are satisfied and if the individual solutions are sufficiently close
to the previous solution:

ρ||
∑
b

lloc
b − l−b ||22 ≤ ε (14a)

||
∑
b

Abl
loc
b ||22 ≤ ε. (14b)

If so, the algorithm terminates and the current solution l̂∗b are
treated as the final solutions for all base stations.

D. Negotiation

If the above conditions do not hold, this means that very likely
the individual estimation of interference powers are not correct
and must be modified, as represented by the violation of the
affine constraints.

The process to modify the solutions can be compared to the
price negotiation method used in [39]: each agent first deter-
mines a local version of bidding, then if these local versions do
not agree, use prices as indicators to fix their bidding until a
consensus is reached. Similarly, at central controller a quadratic
programming problem is solved to find a correction value Δlb
and corresponding dual variable λ1:

minimize
Δl,s

∑
b

(
1
2
ΔlTb ΓbΔlb +∇TUbΔlb

)
+ λ−T

s+
ρ2

2
||s||22
(15a)

s.t.
∑
b

Ab(lb +Δlb) = s (15b)

JbΔlb = 0 ∀b, (15c)

where new parameter ρ2 is a large positive constant for the regu-
lating term, Jb is the (potentially approximate) constraint Jaco-
bian matrix, and Γb is the (potentially approximate) Lagrangian
function Hessian matrix, evaluated at the current individual BS
states {lb}b:

Γb = ∇2(−Ub(l
loc
b ) + μT

b hb(l
loc
b )) (16)

Jb[i] =

{
∇hb(l

loc
b )[i] if hb(l

loc
b )[i] = 0

0 otherwise
(17)

The above problem is motivated from an application of se-
quential quadratic programming (SQP), a common technique
for solving non-convex constrained programming. It aims to
find what the best change Δlb should be for each base station,
such that the LHS of the constraint Eq. (12b) is closer to zero,
the system energy efficiency is low without violating any of
the constraints in Eq. (12a). To find this vector, the trust-region
trick is used: approximate the original non-linear function with
its second-order expansion and optimize this quadratic function
instead. This simplifies the process because second-order opti-
mization problems with linear constraints are readily solvable
by solvers like BARON. Consider the augmented Lagrangian
function:

L(l,λ; ρ2) = −
∑
b

Ub(lb) + μT
b hb(lb)

+ λT
∑
b

Ablb +
ρ2

2
||
∑
b

Ablb||22, (18)

where the new parameter ρ2 is for regulating term and is assumed
to be decreased in a way that does not exceed O(||l− l∗||).
Solving the following problems gives the best directions of
Δl such that the change in function value is minimized while
maintaining constraints:

minimize
Δl

∑
b
L(l+Δl,λ; ρ2)

s.t. hb(lb +Δlb) ≤ 0 ∀b
(19)

From the theory of quadratic programming, one way to solve
problem (19) approximately is to solve its quadratic expansion
[40]:

minimize
Δl,s

∑
b

1
2
ΔlTb ΓbΔlb +∇T

b Δlb + λT s+
ρ2

2
||s||22

subject to hb(lb) + JbΔlb ≤ 0 ∀b∑
b

Ab(lb +Δlb) = s ∀b

(20)

The constant matricesΓb,Jb and∇b are the Lagrangian Hessian,
constraint Jacobian and objective gradient respectively. If we
allow inaccurate gradient information, the problem has the same
form with the problem solved in the negotiation step.

Solving this subproblem gives a correction Δlb to the local
solutions lb gained from the previous step, so that the violation
of the coupling constraint is less severe. The benefits of the usage
of quadratic programming are two-fold: the superior quadratic
convergence helps reduce the overhead in the correction step,
and the use of a second-order term enables a simpler analysis of
the convergence.

Nevertheless, to avoid direct communication of channel
states, each BS needs to maintain estimates of the interference
level caused by others and by itself, therefore the total memory
scale in this step is O(BK2), where B and K are the numbers
of cells and users per cell, respectively. In our examples this is
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still feasible because the number of cooperating cells B does
not grow to a very large value, since the limiting small-cell
BS hardware capabilities do not allow cooperation of a large
group. Although this is an expensive step, it is amenable to
standard techniques which are implemented in available solvers
like SeDuMi or SNOPT. The new solution iterate is given by

l+b = lb +Δlb

λ+ = λ1

(21)

To further reduce the computation cost at this step, approxima-
tions can be used. In the proposed algorithm, inaccurate Jacobian
update rules [40] are used to save space and time. Also Γb can
also be the approximate version of the Hessian matrix, which can
calculated with only first-order gradient information like BFGS.

The specific steps of the algorithm is listed in Algorithm 1,
following the order of the previous analysis.

The proposed method can be applied to multi-antenna users
by viewing a user withNu antennas asNu virtual single-antenna
users, where each virtual users represent one single data stream.
This is valid under typical application cases, when the propa-
gation is non-line-of-sight, and there is a rich scattering envi-
ronment with antennas spaced sufficiently apart. For example,
an environment with many obstacles and the UEs only have a
couple of antennas. In this case, the channel responses observed
across the different antennas on one user are almost uncorrelated
and orthogonal to each other. Therefore the multiple data streams
of one user can be treated as the sum of separate “virtual users”.
From BS’s perspective, there is no distinguishable feature to tell
these virtual users apart unless the BS antennas are directional.

Likewise, the potentially different numbers of users per cell
do not present a problem. It can be seen from the problem
formulation as listed in Section 4, and in each constraint and
objective, the difference in the per-cell user has no effect on
how it is solved. Also, in the decentralization part, the messages
updated between base stations are aggregates of out-of-cell
influence and do not assume a specific knowledge of how many
users exist.

E. Convergence Property

Assuming the final utility function is twice continuously
differentiable, this algorithm then can be shown to be locally
convergent. This means that if the estimated solution is suffi-
ciently close to a KKT point, then the algorithm will converge
to it. This is because the step in Eq. (15) follows from the
convergence results of SQP methods [40].

We first show that the optimum result in the distributed opti-
mizations of Problem (13) provide a reasonably good solution.

Lemma 1: Given twice continuously differentiable utility
functions Ub(lb), and the KKT point (l∗,λ∗), and the condition
∇2(Ub(l

∗
b) + κT

b hb(l
∗
b)) + ρΣi � 0 holds for some ρ > 0 and

all b, and that l and l∗ are sufficiently close, then the problem
(13) has locally unique minimizers {lb}b such that there exist
constant k1 > 0, k2 > 0

||l− l∗|| ≤ k1||l− l∗||+ k2||λ − λ∗|| (22)

Proof: From the definition,

lb = arg min
l̂b

L

= arg min
l̂b

−Ub(̂lb) + λTAb l̂b +
ρ

2
||̂lb − l

(k−1)
b ||2Σb

(23)

It is easy to check that the Hessian of the Lagrangian in Eq. (15a),
which is

∇2(−Ub(l
∗
b) + κT

b hb(l
∗
b)) + ρΣb (24)

are all positive definite for all (l, λ) sufficiently close to the
optimum (l∗, λ∗). Then the minimization results in Eq. (15a)
are well defined and differentiable in this neighborhood. The
statement then holds because ||∂L∂x || < k1 and ||∂L∂λ

|| < k2 hold
from being evaluated at KKT points. �

We could then show that the distance between next iterate
solutions lk+1 and λk+1 and the local optimal points l∗ and λ∗

diminish in a quadratic manner:
Theorem 1: (Quadratic Local Convergence) If the exact Hes-

sian and Jacobian are used in the step Eq. (15c), then there exists
a constant ρ such that

||l(k+1) − l∗|| ≤ ρ

2
||l(k) − l∗||2

||λ(k+1) − λ∗|| ≤ ρ

2
||l(k) − l∗||2 (25)

Proof: By Theorem 11.2 from the literature [40], the up-
date given by the quadratic program (15) is known to exhibit
quadratic convergence when it follows the Newton’s method
update, and when the iterate point is sufficiently close to a KKT
point:

||l+ − l∗||2 ≤ C

2
||lb − l∗b||22 (26)

||λ+ − λ∗|| ≤ C

2
||lb − l∗b||2 (27)

for some constant C.
To see it is indeed a Newton’s method update, one can rewrite

the first order KKT condition of problem (15) in such a way,
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where the update vector is left-multiplied by the gradient and
the RHS is the current value:⎡
⎢⎣Γ

∗ AT C

A 1
ρ2
I 0

C 0 0

⎤
⎥⎦
⎡
⎢⎣ Δl̂

λ(k+1) − λ(k)

κQP

⎤
⎥⎦ =

⎡
⎢⎣∇y

∑
b −Ui +ATλ

−Al̂

0

⎤
⎥⎦

With exact Hessian and Jacobian matrices used here, the source
of inaccuracy comes from the addition of 1

ρ2
I , which goes to

zero if ρ2 is sufficiently large.
Combining this result with the above result from Lemma 1, it

is not hard to arrive at

k1||l(k+1) − l∗||+ k2||λ(k+1) − λ(k)||

≤ αk1 + αk2

2
(||l(k+1) − l∗||2 + ||λ+ − λ∗||2) (28)

given that k1, k2 are all positive coefficients. This establishes the
local quadratic convergence. �

F. Additional Measure for Bad Initial Estimates

To evaluate the progress of an iterate solution, we can define
the penalty function in terms of how severe the constraints are
violated and how optimal the objective function are:

P(l) =
∑
b

−Ub(lb) + μL

∑
b

1T max(hb(lb), 0)

+ λL

∑
b

||Ablb||1, (29)

where μL and λL are sufficiently large positive constants. This
function can only achieve the minimum value at an optimal point
of the original problem. Due to the problem’s non-convexity, it
is possible for the algorithms to be stuck in regions where the
variables change their values but P stagnates due to bad initial
values.

Considering this, if the difference in the penalty value be-
tween successive steps, defined as ΔP = P(l−)−P(l+), is
guaranteed to be lowered bounded by a constant positive number
no matter where the initial point is, then the convergence is
always guaranteed. We show that such property is achievable by
introducing additional steps in the variable update, thus ensuring
the robustness of the proposed method. First, one can show an
easily satisfied condition that ensures the algorithm convergence
no matter where the initial point is.

Lemma 2: If the difference of successive penalty function is
lower bounded by

k3

(∑
b

ρ

2
||lloc

b − l−b ||2Σb
+ λL||

∑
b

Abl
loc
b ||1

)
, (30)

where k3 is a very small positive constant, then the algorithm
always terminates after a finite number of iterations.

Proof: We prove by contradiction. Suppose that the algorithm
cannot terminate. This means that either one of the termination
conditions in Eq. (14) is not met, so either one of the following
is true for infinitely many iterations:

||
∑
b

Abl
loc
b ||1 > ε (31a)

ρ||
∑
b

lloc
b − lb||2Σb

> ε (31b)

Therefore expression (30) in either case must be at least
as large as one of the two, implying the difference in penalty
function is lower bounded:

ΔP ≥ k3

(∑
b

ρ

2
||lloc

b − lb||2Σb
+ λL

∑
b

||Abl
loc
b ||1

)
(32)

≥ k3 min(λLε,
1

2ρ
ε2). (33)

It is a positive constant that only depends on constants ε, λL

and ρ. But when the original problem is feasible, the penalty
function must have a finite minimum. This contradicts with the
assumption that it happens for an infinite number of iterations.
Therefore the presence of Eq. (30) is sufficient for algorithm
convergence. �

To provide a backup solution iterate l+ which can always leave
Eq. (30) satisfied, one can consider such an auxiliary problem:

minimize
{lloc

b }b

∑
b

−Ub(l
loc
b ) +

ρ

2
||lloc

b − lb||2Σi

s.t. hb(l
loc
b ) ≤ 0 ∀b∑

b

Abl
loc
b = 0 ∀b

(34)

This problem form comes from the regularization terms com-
monly used in proximal optimizations [41]. Solution lloc

b to the
problem (34) yields a next iteration that will satisfy the condition
(30):

Lemma 3: The solution to the auxiliary problem (35) provides
an update that will satisfy the sufficient convergence condition.

Proof: We start from the definition of the penalty function
difference:

P(l)−P(lloc∗)

=
∑
b

(
fb(lb) +

ρ

2
||lb − lb||2Σb

)
+ λL||

∑
b

Ablb||

+ μL

∑
b

1T max{0, hb(lb)}

−
∑
b

(
fb(l

loc∗) +
ρ

2
||lloc∗ − lb||2Σb

)
− λL||

∑
b

Abl
loc∗||

− μL

∑
b

1T max{0, hb(l
loc∗)}

≥ ρ

2

∑
b

||lloc∗ − lb||2Σb

=
ρ

2

∑
b

||lloc∗ − lb||2Σb
+ λL||

∑
b

Abl
loc∗||

The last step shows that the difference has a lower bound of the
same form as the condition Eq. (30), hence it can ensure a strict
lower penalty. �

Now that with this lemma we can always find an iterate
solution than can converge, the natural step to take next is to
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see if it can be solved with its dual. In this way it could better
blend in a primal-dual update framework employed in the main
algorithm. Fortunately, the duality gap can be shown to be zero
between the auxiliary problem and its dual. This is shown by the
following lemma.

Lemma 4: The auxiliary problem’s dual problem

max
λ

min
lloc

∑
b

fb(l
loc
b ) + λTAbl

loc
b +

ρ

2
||lloc

b − lb||2Σb
(35a)

s.t. hb(l
loc
b ) ≤ 0 ∀b (35b)

has a zero duality gap.
Proof: This proof follows the outlines given by literature on

proximal operator analysis in Theorem 1 of [42]. �
In effect, we discovered a sufficient condition on the iterate

solution that will ensure the strict decrease in the penalty func-
tion, and then construct an auxiliary problem whose solution
satisfies it. Additionally, this auxiliary problem has a dual prob-
lem where there is no duality gap, making it a natural choice
in a primal-dual update iteration. With these additional tuning
steps the algorithm can ensure the convergence even when the
initial guess is far from the optimum solution. This process is
another demonstration of the compromise between convergence
and complexity commonly found in the algorithm design. These
additional steps, depending on whether condition Eq. (30) is
satisfied, are summarized in Algorithm 2.

VI. NUMERICAL RESULTS

This section illustrates the proposed algorithm’s results in the
scenario depicted in Fig. 1. We perform a system-level multi-
cell simulation, where each cell covers a square area with side
length Lside. Users are randomly placed inside each cell with a
minimum and maximum distance from the BS expressed byLmin

and Lmax. The BSs are put together on a grid, and are assumed to
“wrap-around”, i.e., an upper most cell is a neighbor of a lower
most cell, for equal treatment of edge users. We assume that they
are connected through either fiber or wireless backhaul.

The channels are considered flat within the coherence block
and the samples are i.i.d with distribution hb,bk ∼ CN(0,Θb,k),

TABLE I
LIST OF PARAMETERS’ TYPICAL VALUES USED IN THE SIMULATION

Fig. 3. Achievable energy efficiency with system throughput.

where Θb,k is the correlation matrix. The other experiment
parameters are set in a similar fashion as in [43], [44]. We
document the typical values of key parameters used in Table I.

In the simulations we consider the following approaches for
comparison:

1) using the proposed algorithm with antenna selection opti-
mization(referred to as “ee”)

2) use the proposed algorithm without antenna selection
optimization (referred to as “ee_noant”);

3) use ADMM (hereafter denoted as “method Y”) to solve
for the maximum energy efficiency;

4) the most commonly used zero-forcing (ZF) precoding,
with equal power distribution,

then we compare the effects of incorporating these factors to
justify our choice. In Fig. 3 and Fig. 4 , the curves are fitted from
the discrete dots with a polynomial.

A. Performance Evaluation

As shown in Fig. 3, we fix the number of users per cell to 10
and vary the amount of BS antennas to demonstrate the relation-
ship of the system EE and throughput. As the number of antennas
grows, there is an increase in system throughput, even when
we focus on cell energy efficiency instead of throughput; this
confirms the robust benefits of using more antennas for increased
performance. But the system energy efficiency generally follows
an inverted U-shaped trend. With more antennas, the system
energy reaches a plateau quickly and then the efficiency drops.
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Fig. 4. Energy efficiency comparison with varying power budget.

Fig. 5. System EE versus number of users per cell.

Even when we explicitly optimize the system energy efficiency,
this trend is inevitable, suggesting a potential trade-off between
efficiency and throughput. The best ratio corresponding to the
largest system energy efficiency as the plot shows corresponds
to an antenna-user ratio between 5 to 10. Across the algorithms,
the traditional zero-forcing precoding scheme proves to have
good energy efficiency with simple calculations. We observe a
similar level of performance between the alternate optimization
algorithm, which is expected given that it optimizes the same
goal. Moreover, in the high antenna number region, improved
energy efficiency requires greater care in antenna selection.

In Fig. 4, we consider the effects of constraining the amount
of transmission power for each user on the system energy
efficiency, at a fixed system configuration that has 10 users per
120-antenna cell. These are chosen as typical values for deploy-
ment where the number of antennas is one order larger. As more
power is made available, there is a steady increase in the system
energy efficiency, as the system throughput increases at a faster
rate than system energy cost. Again we observe that optimizing
system energy efficiency results in better performance, but the
benefit can be limited without turning off some antennas at the
cost of lowering system throughput. The gap of performance
caused by antenna selection is seen to be larger as the power
increases. This can be explained by the fact that at the higher
power range, it is likely to turn off some antennas to reduce a
significant power cost at the cost of modest throughput loss.

Next we examine the system energy efficiency under different
user numbers in a cell, as plotted in Fig. 5. We let each cell to
have 110 antennas and let the number of users increase from 3 to

Fig. 6. System EE Change versus Iterations.

Fig. 7. System EE versus consecutive time slots.

20. As expected from the theoretical performance analysis, cell
energy efficiency grows almost linearly. This is because at the
typical values, there is an ample degree of freedom provided by
the antenna array for the optimizer to choose precoding vectors
such that the interference power is very low. As the number
of users grows, if the optimization goal is system efficiency, it
is possible to operate at a lower throughput in exchange for
less transmission power compared with ZF precoding. With
additional antenna selection, larger gain can be achieved by
eliminating more antenna circuit overhead from the system.

In Fig. 6, we consider the convergence performance by plot-
ting the normalized distance between the current objective value
and the optimum versus the iteration index. It is seen that in most
iterations, the proposed method achieves a larger improvement.
This is due to the fact that in the proposed method, each BS can
independently process their parts of the channel information,
and the complexity of centralized processing is significantly
reduced. Even with antenna selection, the resulting convergence
is faster than the alternative.

We demonstrate the achieved system EE across 20 time steps
in Fig. 7. From the figure we can observe that the general trends
of these methods are similar to each other, suggesting that the
system EE depends heavily on the conditions of the channel
realization. Also, it shows that the usage of antenna selection
results in a consistent and significant system energy efficiency
gain.
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Fig. 8. System EE versus the average user count per BS and Antenna count
per BS.

B. System Parameter Selection

In this subsection we are interested in using the proposed
algorithm to see how it could help guide a system designer to
choose appropriate parameters towards a more energy-efficient
system. The scenario under consideration is a cooperating SBS
cluster, and we apply the algorithm to loop through system
parameters K and Nb, in the ranges {20−100} and {50−200}
respectively, to look for the optimum system energy efficiency
configurations.

We can see in Fig. 8 that even when we perform an optimum
precoding scheme, the large scale system behavior remains
similar to the theoretical analysis. With a growing user number
per cell and a larger number of BS antennas, the energy efficiency
rapidly increases to a high point, then further increase would drag
the system energy efficiency down. The optimum level of BS an-
tennas to UE closely matches the one-order-of-magnitude thumb
rule, ranging from 3–8, depending on the system configurations.

The results suggest that 1) using massive MIMO BSs is the
way for high energy efficiency communication system, and
despite a more refined BS power modeling, its high spectral
efficiency is still a dominant factor in its energy efficiency;
2) achieving high EE in massive MIMO is sensitive to many
parameters like hardware efficiency and signal processing cost,
hence system designers need to build a robust and representative
model to fully utilize its potential; 3) EE as a design goal is
in most cases not optimum in SE or power consumption; it is
neither an indicator of Pareto optimality. When it comes to a
multi-objective optimization problem like this, energy efficiency
can only serve as an estimation of system efficiency.

VII. SUMMARY

In this paper we consider the energy-efficient control of
BS power allocation, switching policy, antenna selection and
beamforming in an integrated framework, in the setting of
two-tier Massive MIMO HetNet. We formulate this problem as
a network utility maximization problem, and propose a decen-
tralized algorithm to solve it, using numerical techniques from
sequential quadratic programming and augmented multipliers.
The proposed scheme is evaluated in numerical experiments and
is demonstrated to achieve a superior performance against com-
monly used heuristics. Our findings confirm that the optimized

system energy can be decreased with more antenna element due
to the power cost, and even more users does not monotonously
increase the system energy efficiency. For future research, we
consider it highly promising to continue testing efficient al-
gorithms that reduce power cost in the antenna domain, and
combine it with cross-layer techniques such as user association
for higher efficiency.
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