
2048 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

Energy-Efficient Sleep Scheduling for
Delay-Constrained Applications

Over WLANs
Lu Liu, Student Member, IEEE, Xianghui Cao, Member, IEEE, Yu Cheng, Senior Member, IEEE, and

Zhisheng Niu, Fellow, IEEE

Abstract—In wireless local area networks (WLANs), switching
of the nodes to low-power sleep mode to save energy is common.
However, if sleep time is not properly scheduled, significant delays
can occur, which is undesirable in delay-constrained applications.
In this paper, we propose a novel energy-efficient sleep-scheduling
protocol for maximizing the sleep time lengths of each node while
satisfying the delay constraints. We first consider the single-user
case and present the basic steps that the node takes to decide
when and how long it can sleep. For the multiuser scenario, to
mitigate channel contention in packet downloading after sleeping,
the sleep schedules requested by the nodes are coordinated by the
access point (AP) to avoid overlapping active epochs. Simulation
results demonstrate that the proposed sleep-scheduling algorithm
achieves lower loss rate while achieving higher energy efficiency
than that of the existing GreenCall method.

Index Terms—Delay-constrained applications, energy effi-
ciency, sleep scheduling, wireless local area networks (WLANs).

I. INTRODUCTION

W IRELESS local area networks (WLANs) based on the
IEEE 802.11 standard have been applied in many areas

in which most of the applications are delay sensitive [1].
For example, current smartphones are normally equipped with
WLAN interfaces that can support real-time multimedia data
offloading [2]. WLANs also facilitate online calls through the
voice over Internet protocol (VoIP) [3], [4]. These applications
usually impose strict delay constraints on the data transmitted
in the networks. Each packet needs to arrive at its destination
before a prescribed deadline; otherwise, it will be dropped.

Another critical challenge in wireless networks is saving
energy [5]–[9]. The IEEE 802.11 standard defines a few power-
saving techniques for WLANs, including power-saving mode
(PSM) [10] and automatic power-saving delivery (APSD) [11],
which reduce energy consumption by switching the node from

Manuscript received August 24, 2013; revised January 20, 2014; accepted
February 27, 2014. Date of publication March 21, 2014; date of current version
June 12, 2014. This work was supported in part by the National Science
Foundation under Grant CNS-1053777 and Grant CNS-1320736. The review
of this paper was coordinated by Prof. Y. Fang.

L. Liu, X. Cao, and Y. Cheng are with the Department of Electrical and
Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616
USA (e-mail: xcao10@iit.edu).

Z. Niu is with the Department of Electronic Engineering, Tsinghua Univer-
sity, Beijing 100084, China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2014.2313114

idle sensing mode to sleep mode. However, an energy-efficient
design should also meet the network quality-of-service (QoS)
requirements such as end-to-end delay [12]. If sleep time is
not properly scheduled, significant delays can occur, which is
undesirable in delay-constrained applications. Therefore, these
power-saving techniques need to be enhanced to better accom-
modate sensitive delay constraints [5].

In this paper, we develop energy-saving techniques for delay-
constrained applications over WLANs by dynamically switch-
ing a node to sleep mode, where our goal is to maximize the
length of sleep time under packet deadline constraints. Take
VoIP for example. Normally a VoIP packet can arrive at the
destination ahead of its playout deadline. The GreenCall [13]
algorithm takes advantage of this fact and puts the node into
sleep mode according to the amount of spare time before the
playout deadline. While sleeping, the downlink packets to the
nodes are buffered at the access point (AP). When a node wakes
up, it then retrieves the buffered packets from the AP and plays
them out. The length of sleep time is calculated to ensure timely
retrieving of the packets. To maximize energy savings, the
length of the sleep period is to be chosen so that the packets are
played out right before the deadline. With such an algorithm, a
sleep/wake-up schedule can be computed that allows the node
to remain in sleep mode for significant periods of time.

Primarily designed for the scenario with a single user in
the WLAN, the GreenCall algorithm meets with challenges in
multiuser scenarios. When a node wakes up and attempts to re-
trieve the buffered packets from the AP, the channel may not be
available due to transmissions between the AP and other nodes.
An extra delay will be incurred while waiting for the channel
to become idle, which may consequently cause playout time
violation and packet dropping. To solve this issue, our idea is to
ensure that at any time there can be at most one node accessing
the channel to retrieve buffered packets. To this end, each node
can make a reservation with the AP in advance by sending a
sleep request to the AP indicating that it would like to sleep
now and will later occupy the channel after waking up. The
AP checks whether there is any conflict with the schedules of
other nodes and then decides to approve or decline the current
sleep request. Once a request is approved, the node enters sleep
mode; otherwise, it will stay active and send another request
later. With this coordination mechanism, the active periods of
different nodes are properly shifted to avoid collision, and a
node can immediately start data retrieving after waking up.

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU et al.: ENERGY-EFFICIENT SLEEP SCHEDULING FOR DELAY-CONSTRAINED APPLICATIONS OVER WLANs 2049

The main contributions of this paper can be summarized as
follows.

• We develop an energy-efficient algorithm for reducing the
energy consumption of delay-constrained applications in
WLANs by switching the nodes to a low-power sleep
mode. The algorithm determines sleep period and wake-up
time to maximize energy saving while guaranteeing packet
delay constraints.

• To accommodate the multiuser scenario, a novel schedul-
ing method is proposed. By exchanging sleep requests
between nodes and the AP, downloading epochs for dif-
ferent nodes after waking up can be properly arranged for
collision-free downlink data retrieving.

• Extensive simulation results are presented to demonstrate
the energy savings achieved by the proposed algorithm
over a wide range of network scenarios with different pa-
rameter settings. The results demonstrate that the proposed
sleep scheduling achieves lower loss rate while having
higher energy efficiency than the GreenCall method.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III presents the prob-
lem statements. Section IV develops the energy-efficient sleep-
scheduling algorithms and Section V presents theoretical anal-
ysis of the performance. Simulation results are presented in
Section VI. Section VII gives the concluding remarks.

II. RELATED WORK

The carrier sense multiple access with collision avoid-
ance (CSMA/CA)-based IEEE 802.11 medium access control
(MAC) protocol requires the nodes to keep sensing the channel
or staying in idle mode when they are neither transmitting nor
receiving, which consumes a significant portion of the energy
resources of mobile nodes. Therefore, a promising strategy for
power saving is to switch nodes when doing idle listening to
sleep mode by turning off the wireless interfaces, thus saving
a considerable amount of energy. With the IEEE 802.11 PSM
technique, a node periodically enters sleep mode and wakes
up to retrieve buffered downlink packets from or report uplink
packets to the associated AP [5], [14].

However, since extra delay is introduced by the PSM, QoS
becomes a challenging issue. Downlink packets suffer from
both the buffering delay at AP and the delay due to channel
contention of the destination nodes after waking up. To solve
this, centralized scheduling methods at the AP, which decide
the downlink sequence of all the nodes to either minimize
contention intensity among the nodes [15] or minimize total
waiting time and/or attain fairness [16], have been considered
in the literature. Due to the fixed length of the sleep period,
fluctuations of traffic rate will degrade the performance of PSM.
Therefore, IEEE 802.11e provides the power-saving technique
based on dynamic sleep period, i.e., APSD, in [17]. In the
scheduled version of APSD, the service period (SP) for each
node is determined by the AP’s centralized scheduling. Lee and
Hsieh propose an APSD-based algorithm in [18] to minimize
the possible overlaps between SPs, which however is limited in
general traffic without specifying the delay constraints. Aside
from centralized solutions, unscheduled APSD is defined as

a distributed method where no centralized AP scheduling is
required and each node triggers the downlink process from AP
by uplink packets. Each node can decide the trigger frequency
by the arrival rate of its individual downlink packets and packet
deadline [19]. As shown in [20], a node can turn to sleep mode
in bad channel conditions and wake up to transmit packets
when higher channel quality exists. Because of the distributed
behaviors of nodes, channel contentions introduced by random
channel access still impact the achieved energy efficiency. The
authors in [21] discuss service differentiation in their work.
They assign high priority to time-sensitive traffic and sacrifice
the transmission delay of other traffic at relatively low cost by
varying the sleep period. However, contentions within the same
category of traffic are not fully solved. In this paper, the QoS
requirement is achieved by strictly considering the deadline
of each packet. The scattered channel access of each node is
squeezed to bursts to mitigate contention. Although we keep
the distributed manner of channel access, AP also participates
in coordination to avoid overlapping of channel utilization from
different nodes.

In VoIP networks, silence periods have been exploited to
save energy. For example, for the large inactive periods during
communication, optimal sleep window parameters are analyzed
in [22] and the characteristics of human speech are used to
conserve energy in [23]. However, these works only apply to
relatively long silent periods during VoIP calls. Voice activity
detection [24] and silence period prediction [25] are performed
to reduce energy consumption, but the estimation introduces
additional complexity or computation overhead. In contrast to
these techniques that save energy only during silent periods,
our algorithm can achieve energy conservation regardless of
whether the client is silent or not.

Namboodiri and Gao propose the GreenCall algorithm with
the information of single-packet transmission deadlines, where
they use dynamic sleep period to accommodate delay con-
straints [13]. The length of sleep period is selected to make sure
packets can arrive before playout deadline. Since the downlink
rate from the AP to the mobile node is much larger than the
packet arrival rate, the node only needs to stay awake for a
short time period to retrieve downlink packets and use the spare
time for sleep. The GreenCall algorithm works well for single-
user case, but when there are multiple nodes, the active periods
of different nodes may overlap and the subsequent contention
will lead to additional delay, which causes the packets to
miss their deadlines. To avoid such overlapping, Wang and Xu
propose an uplink scheduling algorithm by arranging the sleep
period of each user alternately [26]. The authors in [27]
also use central scheduling to arrange transmissions. These
centralized methods are not compatible with the GreenCall
algorithm. In this paper, we propose an algorithm that can
tackle this drawback while keeping the efficiency of GreenCall.
When each node attempts to enter sleep mode, it will check
whether the channel will be idle at the time it wakes up.
This is inquired of the AP since it has the sleep/wake-up time
information of all the nodes. With this method, the active peri-
ods of all the nodes are staggered and the deadline constraints
can be better accommodated while energy saving can still be
achieved.

2050 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

Fig. 1. Illustration of a VoIP system with WLAN.

III. PROBLEM STATEMENT

Here, we present the energy-saving problem in delay-
constrained applications over WLANs. For ease of exposition,
we take VoIP over WLANs for example. As shown in Fig. 1, the
sender and receiver (peers) of a VoIP call can access the Internet
via wireline/wireless networks. WLAN can be used to bridge
mobile VoIP nodes to the Internet, which is also advantageous
over cellular Internet method in terms of low energy cost
and extended coverage in indoor environments [13]. In the
WLAN, the uplink and downlink communications for sending
and receiving VoIP packets of the VoIP nodes are coordinated
by an AP, based on the IEEE 802.11 protocol. Specifically, the
CSMA/CA MAC protocol is applied to coordinate transmis-
sions and avoid packet collisions. For ease of exposition, we
describe in the following the receiving procedure of a VoIP
packet since the sending part is symmetric. Upon receiving a
packet, the AP will download it to the corresponding receiver
node. Once the packet reaches the node, it will be stored in a
playout buffer for a while to compress jitter in playback. For
smooth playback, the final playout time of a packet should not
exceed a specific deadline; otherwise, the packet is dropped.
Packet drop rate is an important measurement of the VoIP
performance and is mainly caused by large delay between
the peers of a call. Apart from the Internet delay (i.e., delay
introduced during transmission through the Internet), the MAC
layer delay for the wireless communication between AP and
the node, packet encoding and decoding delay, and delay in the
playout buffer play vital roles.

Since energy is an important concern particularly for power-
constrained mobile nodes, VoIP nodes with WLAN interfaces
want to work with low power while matching the playout dead-
line requirements. The contention-based CSMA/CA protocol
incurs a considerable amount of energy waste for a node in
idle listening. The PSM provided in the IEEE 802.11 protocol
allowing a node’s radio to switch from active to sleep mode
can save a significant amount of idle listening energy. With
PSM, whenever a node wants to sleep, it should inform and
get acknowledged by the AP, such that, during the node’s sleep
period, its downlink packets will be buffered at the AP for
future transmission. The AP periodically broadcasts beacons
containing traffic indication maps (TIMs) to indicate the buffer
state for each node. On the other hand, the node frequently
wakes up to check the beacons and prepares to download
packets from the AP if the corresponding TIM indicates to do
so; otherwise, if there is no packet buffered in the AP, the node
will go back to sleep again.

PSM is suitable for VoIP communications in two aspects.
Each packet has a certain level of delay tolerance; mobile

Fig. 2. Block diagram of system.

nodes may have large portions of time without transmitting or
receiving packets. Therefore, by turning the radio from the idle
listening state to the sleep state, PSM is potentially capable
of saving a large amount of energy while guaranteeing packet
deadline.

In view of the strict playout deadline requirement, the sleep
periods of the nodes in WLAN must be appropriately sched-
uled. First, to save more energy, a node expects to sleep as long
as possible. However, if its sleep period is excessively long, the
downlink packets buffered in the AP during the node’s sleep
period may suffer from long delays and may fail to reach the
node in time. Second, in the case with multiple nodes in the
WLAN, if not appropriately coordinated, the active periods of
nodes may introduce downloading conflict to each other. For
example, when a node wakes up it may have to wait for a while
(introducing more delay to its downlink packets) since the AP
is busy handling another node’s downloading. Finally, a node
may have both downlink and uplink traffic, whose delays are
affected by the sleep-scheduling method. In the next section, we
design energy-efficient sleep-scheduling algorithms for VoIP
systems, leveraging the PSM mechanism. We describe our
algorithms in response to each of the aforementioned problems.

IV. ENERGY-EFFICIENT

SLEEP-SCHEDULING ALGORITHMS

In our algorithms, each node attempts to sleep at the current
time and wake up at some future time by sending request
messages to the AP spontaneously. Only when the request is
permitted by the AP will the node switch to sleep mode and
wake up at the decided time (see Fig. 2). To explain the detailed
operations at the node, we start with a simple scenario where
there is only one node with downlink traffic served by the AP in
the WLAN. The algorithm is then extended to multiuser cases
and to accommodate uplink traffic.

A. Single-User Scenario

Generally, a downlink packet arrives at the AP ahead of its
playout deadline. In fact, this can be approximately achieved
if the sender peer applies time control during the packet’s
uplink stage, as discussed later in Section IV-C. Therefore, if
we slightly postpone a packet’s arrival at the node, it may still

LIU et al.: ENERGY-EFFICIENT SLEEP SCHEDULING FOR DELAY-CONSTRAINED APPLICATIONS OVER WLANs 2051

Fig. 3. Sleep period scheduling in the single-user scenario.

be able to catch up the deadline. Taking advantage of this point,
the node can switch to sleep mode for some time and wake up
before the deadline to retrieve the packet from the AP and play
it out.

1) Algorithm: In PSM, during the sleep period, a node
should frequently wake up for a short period to check whether
the AP has buffered packets to be downloaded. In our case,
since each packet has delay tolerance, the node can sleep con-
tinuously without wasting energy in frequent mode changing.
As shown in Fig. 3, our algorithm runs as follows. Suppose that
the node has received M downlink nonbuffered packets con-
tinuously when it is in active mode. Since sleep will introduce
additional delay to the packets, we first need to figure out how
much extra delay one packet can tolerate without missing its
deadline. Upon reception at the node, each packet has delay
tolerance, denoted as Dn, which is the tolerable amount of time
before being played out excluding the constant time Tdec spent
in packet decoding at the node. In other words, the packet can
only tolerate an additional period of delay Dn to be played out
in time. Let Dn,min be the minimum delay tolerance of those
M packets. If the value of Dn,min is large enough, the node
can consider switching to sleep mode. Specifically, if Dn,min >
Ts,min, the node will decide to sleep. Ts,min, the minimum
sleep period, is used to prevent each node from frequently
switching between active and sleep modes, which can cause
significant amounts of energy consumption to the node [28].
Meanwhile, a large Ts,min may become undesirable since nodes
may seldom enter sleep mode in this case, thus opposing the
saving of energy. In our algorithm, Ts,min is set as 500 ms, i.e.,
a moderate value that each node has a good chance to sleep
upon receiving a fresh packet while preventing frequent mode
switching.

Once sleep switching is decided, the node determines a sleep
period Ts (which is discussed later in Section IV-A2) and sends
the sleep ending time (i.e., the next wake-up time) via a Request
message to the AP. The latter then checks the future channel
condition and confirms the request by replying with a Permit
signal. However, the AP can reject the request by replying
nothing. The node switches to sleep immediately after receiving
the permit and wakes up at the determined time. Otherwise,
if no permit is received after a period of Twait, it remains in
active mode and generates a new request later. All the downlink
packets that arrive during the sleep period will be buffered at
the AP and will be transmitted to the node after the wake-up
time. After retrieving all buffered packets, the node must stay
in active mode for at least a minimum awake time Tawake,min to
be able to receive a number of packets and update the minimum
delay tolerance Dn,min. The packets received after the reserved

Fig. 4. Timing of packet arrival and downloading of a node. (The gap between
the two curves indicates the packet buffering at the AP plus downloading delay.
Notice that the packet arrival time in Fig. 4 is presented as a generic increasing
curve to describe a general packet arrival process.)

downloading period have not been buffered by the AP and
therefore have relatively long delay tolerance. If we do not stay
active to wait for the nonbuffered packets, the delay tolerance
will be derived from the buffered packets, which will be much
smaller since the buffering time will reduce delay tolerance
(i.e., delay tolerance depends on when the packet arrives at
the node). In this case, the delay tolerance may be too short
to trigger the sleep request. As a result, the node will wait for
additional time and update the delay tolerance for the next sleep
attempt. Although our scheme can also work in this case, there
are some unnecessary computations. Therefore, we set the node
to remain active to get nonbuffered packets, which can provide
long-enough delay tolerance to trigger sleep request.

Instead of staying active all the time for scattered packet
arrivals, this method compresses the packet arrivals to a short
period for the node’s downloading and the spare time is used
for sleeping. In addition, the sleep time is chosen to guarantee
that packets arrive before playout deadlines. In this way, idle
listening time is greatly reduced and energy efficiency can be
improved without sacrificing network performance.

2) Deciding the Sleep Period: The length of sleep period
should be carefully designed to guarantee that each packet
can arrive at the node in time. Once the node switches to
sleep mode, all its downlink packets during sleep time will be
buffered at the AP, which will introduce additional delay to
these packets. Among these buffered packets, the packet with
maximum extra delay (denoted as Db,max) is the bottleneck,
where Db,max consists of the time spent in being buffered at
the AP and retrieved by the node. In other words, the buffered
packets suffer at most Db,max length of extra delay caused by
sleep scheduling. However, we are not able to obtain the actual
values of the buffered packets’ delays before they arrive at the
node. A safe and reasonable strategy is to use the delay of
the first buffered packet as Db,max since it suffers the longest
buffering delay and has the earliest playout deadline. As long
as this packet can arrive at the node before its deadline, the
playout deadlines of all the other buffered packets can also be
caught. As shown in Fig. 4, since the packet downloading rate
is faster than the arrival rate,1 the delay will decrease along time

1Otherwise, the buffer size of the AP will be unstable.

2052 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

during the sleep period. The buffered time of the first packet is
the same as the length of sleep period. Therefore, the maximal
length of time the node can sleep is

Ts,max = Db,max −
L

rd
(1)

where rd is the downloading rate, and L is the size of a packet.
In the equation, the maximum delay Db,max is still unknown

to the node when deciding the sleep period. We instead use an
estimation T̂s,max as the maximum sleep length based on the
time information of previously received packets. Since the extra
delay Db,max cannot exceed the delay tolerance, we use Dn,min

as Db,max since the former is the bound of the latter. Here, the
value of Dn,min is obtained by the minimal delay tolerance
of the nonbuffered packets, which are received after the last
downloading period. Since the node must stay in active mode
for at least Tawake,min, Dn,min can be determined based on the
packets received within this period. In the rare case that there
is no packet received during the awake time, Dn,min calculated
in the previous sleep decision will be used. Then, the maximum
sleep period is determined as

T̂s,max = Dn,min − L

rd
. (2)

When the network delay fluctuates widely, the value of
Dn,min may be overestimated, resulting in an inaccurate esti-
mation of sleep length, which may lead to delay violation. In a
conservative way, we do not directly take T̂s,max as the length of
sleep period. Instead, we deduct T̂s,max by an amount of time,
i.e., the sleep guard (denoted as Ts,guard), and set the remaining
value as the actual length of sleep period, which is

Ts = T̂s,max − Ts,guard. (3)

Ts,guard can be set according to the fluctuation of network
delay. For example, if the Internet delay is 100 ms ± 10 ms,
the value of Ts,guard can be set to 10 ms. Adjusting this value
provides the tradeoff between energy saving and packet loss.

As shown in Fig. 4, when all the buffered packets have
been retrieved, the packet arrival and downloading curves meet
if there are no packets that arrived after downloading began.
Otherwise, there may still be a gap between two curves, which
represents the buffering delay of the latest buffered packet.
Once downloading is completed, the node can prepare to cal-
culate the next Ts and switch to sleep mode again. The node
will repeat the sleep/wake-up process periodically to reduce
idle listening time and save energy.

3) Estimating the Downloading Period: Although in the
single-user scenario the AP does not need to calculate the length
of downloading period when deciding whether to confirm a
request, we present the estimation of the downloading period
here as a preliminary for the algorithm running in the multiuser
scenario. As shown in Fig. 4, denote r̃a as the packet arrival rate
averaged over the sleep period Ts. Note that r̃a may be time
varying and its long-term average is denoted as ra. After the
node wakes up, it starts downloading all the buffered packets
from AP in a first-in–first-out order, which is described by
the packet download timeline in the figure. Denote the length

of time spent in retrieving buffered packets as Td. It should
be noticed that during downloading of buffered packets, there
may also be packets arriving at the AP. These packets will
be buffered shortly and then sent to the node following the
previously buffered packets. Therefore, we have the following
relationship:

(Ts + Td)r̃a = Tdrd (4)

where rd is the downloading rate from AP to the node, which
is reversely proportional to the slope of the packet downloading
line in the figure. Since r̃a is unknown to the AP beforehand, its
long-term average ra is used as an estimate, where we assume
that ra is a known parameter. In this sense, the estimated
downloading period T̂d satisfies

(Ts + T̂d)ra = T̂drd. (5)

B. Multiuser Scenario

In the multiuser scenario, the challenge is that when a node
wakes up and wants to retrieve the buffered packets, the AP
may not be available or the channel may be busy due to other
user’s transmissions. Additional delay will be introduced when
waiting for the channel to be idle, which may result in violation
of deadlines and packet drop. In addition, if the channel is
occupied by another node, which is also running this algorithm,
the delay will be much longer since the buffered packets are
continuously retrieved and the channel will be occupied during
the entire process of downloading. To solve this issue, the idea
is to ensure that at any time there is at most one node using
the channel to retrieve buffered packets so that the consequent
data downloading will not collide with other transmissions. If
one node can predict whether the channel will be occupied later
when it wakes up, it can decide whether to sleep based on the
prediction. If the channel is idle when the node wakes up, it
can switch to sleep at the present time; otherwise, the node will
stay active and try to sleep later to avoid future contention. This
requires knowledge of the wake-up time of all the nodes. In our
algorithm, we use the AP to collect the required information
and shake hands with each node informing it whether it should
sleep. Since the AP knows all the reserved downloading periods
of the nodes, it can easily check for a foreseeable future time
when the channel will be idle (otherwise, there will be one node
busy downloading data from the AP). Therefore, once receiving
a sleep request from a node, the AP checks whether the channel
will be idle at the proposed wake-up time of the node. If yes,
the request will be approved. Otherwise, the request is declined
since at the proposed wake-up time, another node (which has
already reserved a future downloading period at the AP) will
be downloading data from the AP. Most of the computation is
done at the AP and communication overhead is minimized to
avoid additional energy consumption at the nodes.

Our algorithm in the multiuser scenario is illustrated in
Fig. 5. For ease of exposition, we consider two nodes, namely,
node i and j. A node decides whether and how long to
sleep based on the same strategy previously described in the
single-user scenario. Once it has decided to sleep, the node will
send the request message encapsulating the wake-up time to
the AP using the contention-based IEEE 802.11 CSMA/CA

LIU et al.: ENERGY-EFFICIENT SLEEP SCHEDULING FOR DELAY-CONSTRAINED APPLICATIONS OVER WLANs 2053

Fig. 5. Sleep period scheduling in the multiuser scenario.

protocol to avoid collisions with other nodes’ transmissions.
Upon receiving the request, the AP estimates the downloading
period T̂d according to (5) and attempts to reserve a period of
T̂d + Td,guard for the requesting node at its proposed wake-up
time. Td,guard represents a reservation guard time immediately
after T̂d. Since there could be bursts of downlink packets arriv-
ing at the AP when the node is sleeping or busy downloading
buffered packets, which cannot be predicted by the AP in
estimating T̂d, the guard time can make room to transmit those
packets. Under a constant or small-fluctuation arrival rate or
when the downloading rate is high enough to accommodate an
unpredicted burst, Td,guard can be set to a relatively small value.
Otherwise, it should be increased accordingly. In our simula-
tions, since the arrival rate is constant and the downloading
rate is relatively high, a short Td,guard, i.e., 5 ms, is selected.
If the calculated reservation period does not overlap with any
other served periods, the AP will mark the reservation for this
node and confirm the request by replying the node with a permit
message. Otherwise, the request is denied and AP will not reply
to the node. In this case, the node will retry sending the request
after waiting for a period of time. During the reserved period,
the AP transmits buffered downlink packets to the designated
node without collisions and buffers the downlink packets of the
other nodes. Note that the reservation guard time is only used
by the AP in the decision process and the actual downloading
period may be shorter than the reservation. After the node
has retrieved all buffered packets from AP in the downloading
period, both AP and the node will return to normal active
mode immediately (terminating the reservation) such that any
downlink packet can be transmitted, and new request/permit
messages can be also exchanged. As previously mentioned,
after the downloading period, the node must stay in active mode
for at least Tawake,min to receive nonbuffered packets.

In the case that the sleep request is lost and not received by
AP, the node will not receive the permit message after Twait and
it can start a new request. Therefore, the packet loss of sleep
request will not affect the normal working of this algorithm. If
the permit message is lost, the AP makes a reservation, which
is in fact invalid. The node will treat its request as rejected
and send a new request. Then, on the AP side, it will receive
a request from a node that is thought to be sleeping. Therefore,
the AP can be aware of the loss of permit message then cancel

the invalid reservation and recalculate the schedule according to
the new request. From the analysis, it can be seen that the pro-
posed algorithm is robust to the loss of request/permit packets.

In the proposed algorithm, although the AP participates in
the coordination, the sleep time of each node is determined by
the node in a distributed manner. Regarding fairness, it can
be ensured in view of the following aspects. First, since the
length of reservation time is decided by the AP, it can decline
a request if the corresponding Td is too large, i.e., to prevent
some node occupying channel for too long, thus ensuring the
access probabilities of all the nodes. Second, each time a node
successfully makes a reservation, it will then go to sleep mode,
and during this time, the other nodes can apply for sleep and
reservation. Meanwhile, during the consequent awake time of a
node after its reservation period, other nodes can shake hands
with the AP for sleeping and reserving a designated period in
the future. In this way, the AP can be prevented from allocating
reservation periods for some node consecutively.

Similar to the single-user scenario, the algorithm converges
the scattered downlink packets into bursts during the download-
ing period. In the multiuser scenario, the algorithm can also
mitigate the channel contention since most of the packets are
transmitted in reserved periods.

C. Dealing With Uplink Traffic

Since our algorithm is focusing on guaranteeing the delay
of received packets, we mainly discuss downlink traffic in the
previous content. The proposed scheduling method is based on
the playout deadline of a packet, which means that the scheme
is performed at the downlink side. However, the scheme is
compatible with uplink traffic. Basically, a node will attempt to
send out an uplink packet as soon as the packet is generated. If
an uplink packet is generated during sleep period, it will break
the sleep state and bring the node to active mode, which will
simply reduce the sleep length but will not disturb the proposed
algorithm. If the uplink packet is generated during reservation
period, it can be sent after downloading. A small amount of
delay is introduced in this case, but it is tolerable since the
reservation period is generally short.

If uplink packets can be buffered at the node during sleep
mode, the sleep period can be preserved and the buffered uplink
packets can be sent along with retrieving downlink packets
during the reservation period. In this case, the node can wake
up ahead of the calculated time to send out uplink packets.
Otherwise, the node sends out the uplink packets immediately
after retrieving the downlink packets during reservation period,
and correspondingly, we lengthen the calculated Td to cover
the uploading time. In this case, delay of uplink packets is
introduced due to the sleep period. If both peers of a VoIP call
are using the proposed algorithm, for fairness, each can use part
of the calculated Ts (e.g., 50% each) as the actual sleep time to
keep the delay within constraint.

If the uplink rate is much larger than the downlink rate, then
it may not be necessary to apply the proposed algorithm since
the actual sleep period may be too short. For example, in a VoIP
conversation, the algorithm can be triggered when the node is
listening or in mutual silence period.

2054 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

V. PERFORMANCE ANALYSIS

Here, we derive analytical models of the system performance
in terms of energy efficiency. Particularly, we focus on the
percentage of energy-efficiency improvement, denoted as η, as
compared with and without applying the proposed algorithms.
For simplicity, we only consider downlink in our analysis. We
assume that the energy consumption due to mode switching
is neglectable and that the Internet delay of downlink packets
when arriving at the AP follows a continuous distribution with
cumulative distribution function F (x).

A. Single-User Scenario

In the single-user scenario, the node applying the algorithm
periodically alternates between sleep mode and downloading
packets. Denote Pt, Pi, and Ps as the power consumption in
transmitting/receiving, idle sensing, and sleep mode, respec-
tively. Taking a generic sleep/wake-up period for consideration,
the expected total energy consumption of one node is

E = E[Ts]Ps + (E[Td] + TRP)Pt + TawakePi (6)

where TRP = Trequest + Tpermit with Trequest and Tpermit as
the times for sending a request and receiving a permit, respec-
tively. Tawake ≥ Tawake,min is the mandatory awake time during
which the node must stay in active mode. To maximize energy
saving, the node will not spend unnecessary time in active state;
therefore, Tawake = Tawake,min.

The energy consumption during the same length of time if
not applying our algorithm is

E0 = (E[Td] + TRP)Pt + (E[Ts] + Tawake)Pi. (7)

In the equation, the expected sleep period E[Ts] and down-
loading period E[Td] are to be derived. To obtain E[Ts], we
need to find the long-term average of Dn,min, as shown in
(2). Since Dn is calculated by subtracting Tdec and network
delay from the corresponding deadline where both Tdec and
the deadline are constant, we can easily get the distribution
of Dn based on the distribution of network delay. Suppose
the distribution function is F (x) = P[Dn < x] with probability
density function f(x) such that

∫ x

0 f(x) = F (x). The function
can be obtained by analyzing the arriving time of historical
packets. Then, the cumulative distribution function of Dn,min

can be calculated as

Fmin(x) =P[Dn,min < x]

≈ 1 − (1 − P[Dn < x])M

= 1 − (1 − F (x))M (8)

where we treat the delay tolerances of the M packets indepen-
dently, whereas practical delays of adjacent packets may be
correlated to some extent and hence use approximating in the
second line. With the previous equation, the expected value of
Dn,min is

E[Dn,min] ≈
∞∫

0

x
d

dx
Fmin(x). (9)

Taking expectations at both sides of (2) and (3) then sub-
stituting (9), we can obtain E[Ts]. According to (5), we have

E[Td] = (ra/rd − ra)E[Ts]. Then, since the numbers of re-
ceived packets for these two cases are the same, the energy
efficiency can be improved by a factor

η =
E0

E
− 1

=
E[Ts](Pi − Ps)

E[Ts]Ps + (E[Td] + TRP)Pt + TawakePi
. (10)

B. Multiuser Scenario

We first consider a homogeneous network where all the
nodes are identical and their downlink traffic follows the same
distribution with average arrival rate ra. For each node, since
its sleep periods and downloading periods are determined based
on the arrival information of its own nonbuffered packets, the
average lengths of sleep periods E[Ts] and downloading periods
E[Td] are the same in the single-user scenario. Moreover, the
long-run averages of the two periods are also the same for all
nodes under the homogeneous network assumption. Because
the algorithm runs fairly for each node, in the ideal case,
the timeline of the AP will show a pattern that the nodes
occupy reservation periods alternately and the average num-
ber of reservation periods for the nodes should be the same.
Suppose there are n nodes. Note that during the downloading
period, the AP only serves the reserved node, ignoring the
sleep requests from others. In this sense, the other nodes cannot
occupy the channel during downloading period, and there will
be no overlapping between downloading and request/permit
transmissions. Therefore, for each node, the average length of
time it is occupying the channel in one sleep/wake-up round can
be approximately evaluated as Δ = TRP + E[Td] +ML/rd,
where ML/rd accounts for the time that the client receives
averagely M nonbuffered packets during the awake period.
Now, consider a total of nΔ time in which the clients take turns
to sleep, we must have

nΔ ≤TRP + E[Td] + E[Ts] + Tawake (11)

nΔra ≤E[Td]rd +ML (12)

where the first line shows that the sleep and awake periods of
a node should be long enough to accommodate other node’s
downloading periods; otherwise, a certain amount of packets
will be dropped at the AP due to limited channel capacity, no
matter whether the proposed algorithm is applied or not. The
second line asserts that the packet downloading rate matches
the arrival rate so that the network is stable. Moreover, (11) can
be reduced to

Tawake ≥ (n− 1) (TRP + E[Td])− E[Ts] + n
ML

rd
(13)

which gives a lower bound for the awake period. Therefore, we
assume that both (11) and (12) are satisfied in the following.

For each node, the energy-efficiency improvement can be
calculated following the same way as previously presented in
(6)–(10) except that the awake time now may be longer. In view
of (13), Tawake can be set as max{Tawake,min, (n− 1)(TRP +
E[Td])− E[Ts] + n(ML/rd)}.

LIU et al.: ENERGY-EFFICIENT SLEEP SCHEDULING FOR DELAY-CONSTRAINED APPLICATIONS OVER WLANs 2055

TABLE I
DEFAULT SIMULATION PARAMETER SETTINGS

In practice, since the nodes may be heterogeneous, Ts and
Td of each node may be different and varying along time; the
distribution of reservation periods is much more random. In this
case, it is possible that there are some users failing to obtain
sleep chance at some time and remaining longer time in active
mode. Therefore, the energy saving is less than the ideal value.
However, since most of the sleep requests can be approved,
the energy efficiency can be still improved a lot compared
with not using the algorithm. We will demonstrate the effect
of heterogeneity with simulations in the next section.

VI. SIMULATION RESULTS

Here, we present simulation results of the proposed algo-
rithm. We develop an NS2 [29] program to simulate a VoIP
system over WLAN where the WLAN contains one AP and
three VoIP mobile nodes. Parameter settings in our simulations
are listed in Table I. In the proposed scheduling algorithm, each
node calculates the length of next sleep period according to
the delay tolerance of received nonbuffered packets, i.e., the
time between original packet arrival at the AP and the playout
deadline. We assume that the downlink packets are generated by
the peers of the current receiving nodes every 20 ms, where they
are assumed of the same length L = 160 bits. Before arriving
at the AP, each packet experiences the Internet delay, which is
modeled as a random value following uniform distribution in
the range 100 ms ± 10 ms. In this case, the average packet
arrival rate at the AP is ra = 50 pkt/s. The packet lifetime, i.e.,
the time gap between packet generation and playout deadline,
is used to calculate the delay tolerance. The minimum sleep
period Ts,min is set to 500 ms. The sleep and reservation
guard times, i.e., Ts,guard and Td,guard, are set to 10 and 5 ms,
respectively. The time period Twait that a node should wait after
sending a request message to receive the corresponding permit
message from the AP is set to 50 ms. The minimum awake
time Tawake,min is configured to 50 ms. In the following, by
default, we focus on the scenarios with only downlink traffics
and evaluate the effect of uplink traffics later here.

A. Performance Evaluation

The performance of our algorithm is measured by the per-
centage of energy saving η (compared with the scenario without
node sleeping) and the packet loss rate of each node. The value

Fig. 6. Tradeoff between energy saving and packet loss rate with tuning of the
sleep guard time.

of η derived from (10) is shown in some of the figures as the
theoretical upper bound. The energy saving mainly depends
on the portion of time that a node is sleeping, and the packet
loss occurs if a packet misses its playout deadline or a collision
happens. Generally, excessive Internet delay will lead to packet
loss no matter whether our or other algorithms are used or not.
To clearly demonstrate the performance of our algorithm, we
focus on the packet loss incurred by the algorithm due to inac-
curate estimation of the sleep period or collisions. Therefore,
in our simulations, the Internet delay is set to be smaller than
the packet lifetime (the time from packet generation to playout
deadline) such that packet losses caused by Internet delay are
excluded.

1) Tradeoff Between Energy Saving and Packet Loss: Gen-
erally, the longer a node sleeps, the more likely its downlink
packets miss the playout deadlines and hence the higher loss
rate. Our simulation results show that, on average, our method
can achieve 80% energy saving with packet loss rate around
1%. In the following, we present detail performance evaluations
under various simulation scenarios. We first vary the sleep
guard to evaluate the tradeoff between energy saving and packet
loss rate.

As shown in Fig. 6, when we reduce the sleep guard time,
both energy saving and packet loss rate increase. With a rela-
tively short sleep guard, the nodes can stay in sleep mode for
a longer time, as shown in (3), which may result in underes-
timated Internet delay. Using this inaccurate value to calculate
the sleep period, the nodes may wake up and find some packets
already missing the deadlines. A more conservative way to
decide the sleep length is to use a larger sleep guard, which can
greatly reduce the packet loss rate at the cost of lower energy
saving.

2) Impact of Internet Delay: Fig. 7 shows the system per-
formance under varying Internet delays. As the Internet delay
increases, there is less time for sleeping and the node will wake
up more frequently to retrieve packets buffered at the AP. As a
result, the retrieved packets are less likely to miss the playout
deadline and the loss rate will decrease. In this case, both
the energy saving and the packet loss rate are reduced. If the
Internet delay is very large the spare time is not long enough to
initiate a sleep period, the sleep time will be further reduced.

We also compare the achieved energy saving with the theo-
retical upper bound (obtained based on the model proposed in
Section V). The upper bounds are calculated assuming the ideal
situation that all the sleep requests can be granted. In practice,

2056 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

Fig. 7. Performance under different Internet delays.

Fig. 8. Packet loss rate under different Internet delay varying ranges.

Fig. 9. Performance under different uplink traffic rates.

some sleep requests may be declined due to reservation conflict
and the nodes have to wait for some time for next request.
Therefore, the achieved energy saving from simulation results is
slightly lower than the upper bounds. However, the difference
is only around 2% so that the accuracy of our model can be
verified.

The variance of Internet delay or equivalently the variance
of packet interarrival time also has influence on the perfor-
mance. Although it does not affect the sleep time percentage
or energy saving due to averaging effect, large variance will
cause a higher packet loss rate, as shown in Fig. 8. When the
Internet delay is changing widely, the possibility that the delay
is underestimated by the nodes becomes larger, which results
in improper decision of sleep length and packet drop. To tackle
this problem, we can conservatively choose a larger sleep guard
(as discussed earlier).

3) Impact of Uplink Traffic: Fig. 9 shows the performance
under different uplink packet generation rates. The uplink pack-
ets of a node will be transmitted after the downlink packet re-
trieving process. Therefore, to make room for uplink traffic, the
reservation length is lengthened. Longer reservation time leads
to smaller percentage of sleep time; hence, the energy savings
decrease as the uplink traffic rate increases. In addition, staying

TABLE II
PERFORMANCE OF HETEROGENEOUS USERS

active for a longer time period reduces the chance of missing
packet deadline, and the packet loss rate is slightly decreased.

4) Heterogeneous Users and Fairness: Previously, we as-
sumed that all the nodes are homogeneous with the same
settings. Here, we evaluate the performance with heterogeneous
nodes, where five nodes with different packet arrival rates or
Internet delays are used. Table II lists the simulation results.

In both homogeneous and heterogeneous situations, the av-
erage performance of each node is almost the same with that of
the others, ensuring fairness among users.

5) Overhead Analysis: In the proposed algorithm, each
node only needs to record the arrival time of the previous packet
and perform a simple calculation to get the sleep request; hence,
the computation overhead at the user side is negligible. As for
the AP, the additional computation is to calculate reservation
length and check its timeline, which are also simple manipu-
lations. Therefore, our method has no computation complexity
and very low computation overhead.

Communication overhead is introduced by sending sleep
requests and receiving permit messages. As shown in Table III,
the number of sleep requests is always larger than the theoreti-
cal value since there are rejected requests in practice. Similarly,
the number of sleep/wake-up periods is slightly smaller than
the ideal case, and therefore, the number of sleep permits
(indicating the number of successful sleep/wake-up periods)
is smaller than theoretical value. Finally, the communication
overhead is about 1.3% compared with the normal data packets,
which will not cause a large amount of additional traffic in the
network.

B. Performance Comparison With GreenCall

Since the major improvement offered by our algorithm
compared with the GreenCall algorithm is the performance in
multiuser scenarios, Figs. 10 and 11 present the performance
comparison at different numbers of nodes. The sleep guard is
set to 1 and 10 ms in the two figures, respectively.

In Figs. 10 and 11, we can observe that the energy saving
of the GreenCall algorithm is slightly higher than that of our
algorithm since there is no reservation arrangement and each
node follows its own scheduling regardless of the potential
conflict with the others. Contention during the retrieving pro-
cess will incur additional waiting; hence, the energy saving is
decreased as the number of nodes increases. In our algorithm,
we need to negotiate sleep scheduling between nodes and the
AP; therefore, the rejection of a sleep request will introduce
some additional active time to the nodes. As the number of
nodes increases, the sleep request is more likely to be declined;
hence, there is a larger gap between upper bounds and our
method. However, the gap is at most 4%, which is very slight.

LIU et al.: ENERGY-EFFICIENT SLEEP SCHEDULING FOR DELAY-CONSTRAINED APPLICATIONS OVER WLANs 2057

TABLE III
COMMUNICATION OVERHEAD

Fig. 10. Performance comparison (small sleep guard).

Fig. 11. Performance comparison (large sleep guard).

Although both algorithms suffer additional waiting time in
the multiuser scenarios, the waiting turns into delay in the
GreenCall algorithm but turns into normal active state in our
algorithm. Consequently, our method has an advantage on the
lower packet loss rate, which is demonstrated in the figures.
As discussed in the previous sections, our method can avoid
conflict among busy downloading periods of different nodes.
Therefore, the contention can be mitigated, and the packet loss
rate can be much lower than that of the GreenCall algorithm,
which suffers more packet losses, particularly in multiuser
scenarios. In both methods, the packet loss rate will increase
with the number of nodes, but by the results of our method, the
increase is not very fast compared with that of the GreenCall
algorithm.

We further compare the energy efficiency of the two al-
gorithms where energy efficiency is defined as the amount
of data bits transmitted per unit of energy consumption. The
results in Figs. 10 and 11 show that our algorithm outperforms
the GreenCall algorithm in terms of energy efficiency in all
cases. In summary, the algorithm proposed in this paper can
achieve lower packet loss rate with only slight degradation of
energy saving and can also achieve higher energy efficiency.
The performance of our method is also more robust as the
number of nodes increases.

VII. CONCLUSION

In this paper, we have proposed an energy-efficient sleep-
scheduling algorithm for delay-constrained applications over
WLAN. Each node calculates its sleep period under packet
delay constraint and requests that the AP reserve a future period
for exclusive transmission. The AP examines the scheduling
of all the nodes and makes sure that there are no overlapping

reservation periods. In this way, the active periods of different
nodes are staggered to mitigate contention and prevent further
packet losses. The performance of the proposed algorithm in
terms of energy saving and packet loss rate is evaluated by
NS2 simulations and the results show that the algorithm can
achieve significant energy saving while keeping the packet
loss rate at a very low level. Comparison between our method
and the existing GreenCall algorithm shows that the former
outperforms the latter in terms of energy efficiency.

REFERENCES

[1] M. Schaar, Y. Andreopoulos, and Z. Hu, “Optimized scalable video
streaming over IEEE 802.11 a/e HCCA wireless networks under delay
constraints,” IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 755–768,
Jun. 2006.

[2] B. Han, P. Hui, V. S. A. Kumar, M. Marathe, J. Shao, and A. Srinivasan,
“Mobile data offloading through opportunistic communications and social
participation,” IEEE Trans. Mobile Comput., vol. 11, no. 5, pp. 821–834,
May 2012.

[3] J. Tang and Y. Cheng, “Quick detection of stealthy SIP flooding
attacks in VoIP networks,” in Proc. IEEE ICC, Kyoto, Japan, Jun. 5–9,
2011, pp. 1–5.

[4] B. Goode, “Voice over Internet protocol (VoIP),” Proc. IEEE, vol. 90,
no. 9, pp. 1495–1517, Sep. 2002.

[5] S. Tsao and C. H. Huang, “A survey of energy efficient MAC protocols
for IEEE 802.11 WLAN,” Comput. Commun., vol. 34, no. 1, pp. 54–67,
Jan. 2011.

[6] I. Humar, X. Ge, L. Xiang, M. Jo, and M. Chen, “Rethinking energy ef-
ficiency models of cellular networks with embodied energy,” IEEE Netw.
Mag., vol. 25, no. 3, pp. 40–49, Mar./Apr. 2011.

[7] L. Xiang, X. Ge, C.-X. Wang, F. Li, and F. Reichert, “Energy efficiency
evaluation of cellular networks based on spatial distributions of traffic load
and power consumption,” IEEE Trans. Wireless Commun., vol. 12, no. 3,
pp. 961–973, Mar. 2013.

[8] X. Ge, K. Huang, C.-X. Wang, X. Hong, and X. Yang, “Capacity analysis
of a multi-cell multi-antenna cooperative cellular network with co-channel
interference,” IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3298–
3309, Oct. 2011.

[9] L. Liu, X. Cao, Y. Cheng, L. Du, W. Song, and Y. Wang, “Energy-
efficient capacity optimization in wireless networks,” in Proc. IEEE
INFOCOM, 2014 . [Online]. Available: http://www.ieee-infocom.org/
Program_technical.html, to be published.

[10] IEEE Standard for Information Technology - Telecommunications and
Information Exchange Between Systems - Local and Metropolitan Area
Networks - Specific Requirements Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Std 802.11-2007, Jun. 2007.

[11] IEEE Standard for Information Technology - Telecommunications and
Information Exchange Between Systems - Local and Metropolitan Area
Networks - Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 8:
Medium Access Control (MAC) Quality of Service Enhancements, IEEE
Std 802.11e-2005, 2005.

[12] H. Li, Y. Cheng, C. Zhou, and W. Zhuang, “Routing metrics for mini-
mizing end-to-end delay in multi-radio multi-channel wireless networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 11, pp. 2293–2303,
Nov. 2013.

[13] V. Namboodiri and L. Gao, “Energy-efficient VoIP over wireless
LANs,” IEEE Trans. Mobile Comput., vol. 9, no. 4, pp. 566–581,
Apr. 2010.

[14] Y. He, R. Yuan, and W. Gong, “Modeling power saving protocols for mul-
ticast services in 802.11 wireless LANs,” IEEE Trans. Mobile Comput.,
vol. 9, no. 5, pp. 657–671, May 2010.

2058 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 5, JUNE 2014

[15] Y. He and R. Yuan, “A novel scheduled power saving mechanism for
802.11 wireless LANs,” IEEE Trans. Mobile Comput., vol. 8, no. 10,
pp. 1368–1383, Oct. 2009.

[16] Z. Zeng, Y. Gao, and P. R. Kumar, “Sofa: A sleep-optimal fair-attention
scheduler for the power-saving mode of WLANs,” in Proc. IEEE ICDCS,
2011, pp. 87–98.

[17] X. Prez-Costa and D. Camps-Mur, “IEEE 802.11E QoS and power saving
features overview and analysis of combined performance,” IEEE Wireless
Commun., vol. 17, no. 4, pp. 88–96, Aug. 2010.

[18] T. Lee and J. Hsieh, “Low complexity class-based scheduling algorithm
for scheduled automatic power-save delivery for wireless LANs,” IEEE
Trans. Mobile Comput., vol. 12, no. 3, pp. 571–580, Mar. 2013.

[19] X. Prez-Costa and D. Camps-Mur, “AU-APSD: Adaptive IEEE 802.11e
unscheduled automatic power save delivery,” in Proc. IEEE ICC, 2006,
pp. 2020–2027.

[20] X. Chen, S. Jin, and D. Qiao, “M-PSM: Mobility-aware power save mode
for IEEE 802.11 WLANs,” in Proc. IEEE ICDCS, 2011, pp. 77–86.

[21] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke, “Analysis
of IEEE 802.11e for QoS support in wireless LANs,” IEEE Wireless
Commun., vol. 10, no. 6, pp. 40–50, Dec. 2003.

[22] X. Lin, L. Liu, J. Liu, N. Xie, and H. Wang, “Locating the optimal sleep
window for enhancing the energy efficiency of VoIP in WiMAX systems:
A modified analysis model and performance evaluation,” in Proc. 7th Int.
Conf. WiCOM, 2011, pp. 1–5.

[23] X. Lin, L. Liu, H. Wang, and Y. Kwok, “On exploiting the on–off char-
acteristics of human speech to conserve energy for the downlink VoIP in
WiMAX systems,” in Proc. 7th IWCMC, 2011, pp. 337–342.

[24] J. Lee and D. Cho, “Dual power-saving modes for voice over IP traf-
fic supporting voice activity detection,” IET Commun., vol. 3, no. 7,
pp. 1239–1249, Jul. 2009.

[25] A. Pyles, Z. Ren, G. Zhou, and X. Liu, “SiFi: Exploiting VoIP silence for
WiFi energy savings in smart phones,” in Proc. 13th Int. Conf. Ubiquitous
Comput., 2011, pp. 325–334.

[26] L. Wang and H. Xu, “An energy saving based uplink scheduling algorithm
for VoIP services in IEEE 802.16 systems,” in Proc. 4th Int. Conf. Wireless
Commun., Netw. Mobile Comput., 2008, pp. 1–4.

[27] K. Ting, F. Kuo, B. Hwang, H. Wang, and C. Tseng, “A power-saving
and robust point coordination function for the transmission of VoIP over
802.11,” in Proc. ISPA, 2010, pp. 283–289.

[28] G. Wong, Q. Zhang, and D. Tsang, “Switching cost minimization in the
IEEE 802.16 e mobile WiMAX sleep mode operation,” Wireless Commun.
Mobile Comput., vol. 10, no. 12, pp. 1576–1588, 2010.

[29] The Network Simulator - ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

Lu Liu (S’13) received the B.S. degree in automa-
tion in 2010 from Tsinghua University, Beijing,
China, and the M.S. degree in electrical engineer-
ing in 2012 from Illinois Institute of Technology,
Chicago, IL, USA, where she is currently working
toward the Ph.D. degree with the Department of
Electrical and Computer Engineering.

Her current research interests include energy-
efficient networking and communication, resource
allocation, and protocol design of wireless networks.

Xianghui Cao (S’08–M’11) received the B.S. and
Ph.D. degrees in control science and engineering
from Zhejiang University, Hangzhou, China, in 2006
and 2011, respectively.

During 2007–2009, he was a Visiting Scholar
with the Department of Computer Science, The Uni-
versity of Alabama, Tuscaloosa, AL, USA. He is
currently with the Department of Electrical and
Computer Engineering, Illinois Institute of Technol-
ogy, Chicago, IL, USA. His research interests in-
clude wireless network performance analysis, energy

efficiency of wireless networks, networked estimation and control, and network
security.

Dr. Cao is or was a Technical Program Committee Member of the IEEE
Global Communications Conference (GLOBECOM) in 2013 and 2014, the
IEEE International Conference on Communications in 2014, the IEEE Vehicu-
lar Technology Conference in 2013 and 2014, as well as other conferences. He
is also an Associate Editor of the KSII Transactions on Internet and Information
Systems and Security and Communication Networks (Wiley).

Yu Cheng (S’01–M’04–SM’09) received the B.E.
and M.E. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1995 and
1998, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2003.

From September 2004 to July 2006, he was a
Postdoctoral Research Fellow with the Department
of Electrical and Computer Engineering, University
of Toronto, Toronto, ON. Since August 2006, he has
been with the Department of Electrical and Com-

puter Engineering, Illinois Institute of Technology, Chicago, IL, USA, where
he is currently an Associate Professor. His research interests include next-
generation Internet architectures and management, wireless network perfor-
mance analysis, network security, and wireless/wireline interworking.

Dr. Cheng served as a Co-Chair of the Wireless Networking Symposium of
the IEEE International Conference on Communications (ICC) in 2009, a Co-
Chair of the Communications QoS, Reliability, and Modeling Symposium of
the IEEE Global Communications Conference (GLOBECOM) in 2011, a Co-
Chair of the Signal Processing for Communications Symposium of the IEEE
ICC in 2012, a Co-Chair of the Ad Hoc and Sensor Networking Symposium
of the IEEE GLOBECOM in 2013, and a Technical Program Committee Co-
Chair of the International Conference on Wireless Algorithms, Systems, and
Applications (WASA) in 2011. He is a founding Vice Chair of the IEEE
Communications Society Technical Subcommittee on Green Communications
and Computing. He is an Associate Editor of the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY and the New Books and Multimedia Column
Editor of IEEE Network. He received a Best Paper Award at QShine in 2007 and
at IEEE ICC in 2011. He received the National Science Foundation CAREER
Award in 2011 and the IIT Sigma Xi Research Award in the junior faculty
division in 2013.

Zhisheng Niu (M’98–SM’99–F’12) received the
B.E. degree from Beijing Jiaotong University,
Beijing, China, in 1985 and the M.E. and D.E.
degrees from Toyohashi University of Technology,
Toyohashi, Japan, in 1989 and 1992, respectively.

During 1992–1994, he was with Fujitsu Labora-
tories, Ltd., Kawasaki, Japan. In 1994, he joined
Tsinghua University, Beijing, China, where he is cur-
rently a Professor with the Department of Electronic
Engineering, the Deputy Dean of the School of Infor-
mation Science and Technology, and the Director of

Tsinghua-Hitachi Joint Laboratory on Environmental Harmonious ICT. He is
also a guest Chair Professor with Shandong University, Jinan, China. His major
research interests include queuing theory, traffic engineering, mobile Internet,
radio resource management of wireless networks, and green communication
and networks.

Dr. Niu is a Fellow of the Institute of Electronics, Information, and Commu-
nication Engineers. He received the Outstanding Young Researcher Award from
the National Natural Science Foundation of China in 2009 and the Best Paper
Award from the IEEE Communication Society Asia-Pacific Board in 2013. He
was also a co-recipient of the Best Paper Awards at the Asia-Pacific Conference
on Communication in 2007, 2009, and 2013, as well as from the International
Conference on Wireless Communications and Signal Processing in 2013 and
the Best Student Paper Award from the 25th International Teletraffic Congress
(ITC25). He is currently the Chief Scientist of the National Basic Research
Program (the “973 Project”) of China on “Fundamental Research on the En-
ergy and Resource Optimized Hyper-Cellular Mobile Communication System”
(2012–2016), which is the first national project on green communications in
China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

