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Abstract—The distributed nature of the CSMA/CA-based wireless protocols, for example, the IEEE 802.11 distributed coordinated
function (DCF), allows malicious nodes to deliberately manipulate their backoff parameters and, thus, unfairly gain a large share of
the network throughput. In this paper, we first design a real-time backoff misbehavior detector, termed as the fair share detector (FS
detector), which exploits the nonparametric cumulative sum (CUSUM) test to quickly find a selfish malicious node without any a priori
knowledge of the statistics of the selfish misbehavior. While most of the existing schemes for selfish misbehavior detection depend
on heuristic parameter configuration and experimental performance evaluation, we develop a Markov chain-based analytical model to
systematically study the performance of the FS detector in real-time backoff misbehavior detection. Based on the analytical model,
we can quantitatively compute the system configuration parameters for guaranteed performance in terms of average false positive
rate, average detection delay, and missed detection ratio under a detection delay constraint. We present thorough simulation results
to confirm the accuracy of our theoretical analysis as well as demonstrate the performance of the developed FS detector.

Index Terms—Selfish misbehavior, real-time detection, IEEE 802.11, CUSUM test, Markov chain model

1 INTRODUCTION

HE IEEE 802.11-based wireless local area networks
(WLANS) have been widely deployed over recent years
due to their high-speed access, easy-to-use features, and
economical advantages. To resolve the contention issue
among the multiple participating nodes, 802.11 employs the
carrier sense multiple access/collision avoidance (CSMA/
CA) protocol to ensure that each node gets a reasonably fair
share (FS) of the network. This is particularly the case for
the distributed cooperation function (DCF) of 802.11, where
every node accesses the network in a cooperative manner
and randomly delays transmissions to avoid collisions by
following a common backoff rule [1]. However, in such a
distributed environment without a centralized controller, a
malicious node may deliberately choose a smaller backoff
timer and selfishly gain an unfair share of the network
throughput at the expenses of other normal nodes’ channel
access opportunities. Moreover, only to make things worse,
the easily available programmable and reconfigurable
wireless network devices nowadays [2], [3] make the
backoff misbehavior much more feasible.
To efficiently detect the backoff misbehavior, a detec-
tion scheme needs to address the two main correlated
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challenges: 1) unknown misbehavior strategy, 2) real-time
detection of the misbehavior. For the first challenge, because a
malicious node can first behave as a normal node and then
manipulate its backoff timer to a random small value at any
time, we have no way to know the misbehavior strategy a
priori. For the second, the misbehavior needs to be detected
in real time and we can then isolate the malicious node to
prevent it from bringing more harm to the network as soon
as possible. The existing solutions either cannot address
both issues at the same time [4], [5], [6], [7], or require
modifications to the 802.11 protocols [8], [9].

Addressing the challenges, in this paper, we first design
a real-time backoff misbehavior detector, termed as the fair
share detector (FS detector), which exploits the nonpara-
metric cumulative sum (CUSUM) test to quickly find a
selfish malicious node without any a priori knowledge of
the statistics of the selfish misbehavior. The work in [3]
develops a robust detector for backoff misbehavior detec-
tion based on the Kolmogorov-Smirnov (K-S) test, without a
priori knowledge of the misbehavior strategy either. The
detector resorts to estimating the collision probability of a
transmission to establish the distribution of the idle time
between two consecutive successful transmissions from a
tagged node. The collision estimation is, however, done
with an approximate method for short detection delay; such
an approximation in fact negatively impacts the perfor-
mance in both false positive rate and detection delay, to be
discussed in detail in Section 7. In our preliminary work
[19], we adopt the nonparametric CUSUM test for the
backoff misbehavior detection as well. The detector in [19]
directly counts the number of successful transmissions of
a tagged node within an observation window to obtain a
sample. The observation window needs to linearly increase
with the number of nodes in the network to fairly count
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transmissions from each node, which as a result will
increase the detection delay. The FS detector newly
developed in this paper takes each successful transmission
over the network as its observation sample. Such a
sampling method is independent of the network size and
turns out to result in good performance in both false
positive rate and detection delay. Also, the FS detector does
not require any modification to the protocols, and can be
implemented by any node assuming the role of the
detection agent that monitors the network.

Another significant open research issue regarding the
selfish misbehavior detection is that most of the existing
detection schemes depend on heuristic parameter config-
uration and experimental performance evaluation [3], [4],
[10], [11]. Such a heuristic approach largely limits the
flexibility and robustness of the detection scheme; a change
of the operation context could trigger the retraining of the
configuration parameters by experimenting over a large set
of data traces and the performance under those heuristic
parameters is not theoretically provable.

To address the issue, in this paper, we further develop
an analytical model for the FS detector, which can provide
quantitative performance analysis and theoretical guidance
on system parameter configuration. Specifically, we use a
discrete-time Markov chain to model the behavior of the
detector, because the detector’s next state depends only on
its current value and the coming observation sample. This
Markov chain-based model enables us to conduct rigorous
quantitative analysis of the FS detector on three funda-
mental metrics: average false positive rate, average detection
delay, and missed detection ratio, and further compute the
system configuration for guaranteed performance. In
particular, the Markov chain modeling the FS detector
takes different transition probabilities under the normal
traffic condition and under the abnormal condition with
misbehaving nodes present, respectively. The Markov chain
obtained from the normal traffic condition can be used to
directly calculate the average false positive rate and also
provide the initial states for misbehavior analysis. Based on
these initial states, we can then use the Markov chain under
the abnormal conditions to analyze the average detection
delay and the missed detection ratio. Note that the missed
detection ratio is not often considered in the context of the
CUSUM test due to its “nonstop until detection” property.
In this paper, we examine a missed detection ratio under a
detection delay constraint, which is of importance regarding
real-time detection.

In summary, the main contributions of the paper come in
four aspects:

1. We develop an effective detector for real-time
misbehavior detection in 802.11-based wireless
networks.

2. We develop a discrete-time Markov chain-based
model to characterize the detection system.

3. We utilize the model to conduct rigorous quantita-
tive analysis of the detector and guide the system
configuration for guaranteed performance.

4. We provide analytical and simulation results to
confirm the accuracy of our theoretical analysis, and
demonstrate the robust performance of the devel-
oped FS detector under varying network size,
against the short-term unfairness, and in the situa-
tion when both UDP and TCP traffic exists.

The rest of the paper is organized as follows: Section 2
reviews more related work. Section 3 describes the system
model. In Section 4, we present the detector design.
Section 5 develops the Markov chain-based analytical
model, and Section 6 gives the theoretical performance
analysis based on the Markov chain model. Section 7
presents the simulation results. Section 8 discusses how to
extend our analytical model to address the case of multiple
malicious nodes as well as misbehavior beyond backoff
timer manipulation. Section 9 concludes the paper.

2 REeLATED WORK

The problem of detecting backoff misbehavior over the
802.11-based medium access control (MAC) protocol has
been widely studied in the literature. In [8], [9], a
modification to the 802.11 protocol is proposed to facilitate
the misbehavior detection, where the receiver assigns a
backoff timer for the sender. If the number of idle slots
between consecutive transmissions from the sender does
not comply with the assigned backoff timer, the receiver
may label the sender as a selfish node. Modification to the
802.11 protocol and reliance on a trustworthy receiver are
the main limitations of the work.

Another approach to deal with the backoff misbehavior
is to develop protocols based on the game-theoretic
techniques [14], [15], [16]. The goal is to encourage all the
nodes to reach a Nash equilibrium. As a result, a malicious
node is not able to gain an unfair share compared to well-
behaved nodes and, thus, discouraged from the misbeha-
vior. However, this category of approaches assumes that all
the nodes are willing to deviate from the protocol when
necessary, and the standard protocol needs to be modified.
A heuristic sequence of conditions is proposed in [17], [18]
to test multiple misbehavior options over the 802.11 MAC
based on simple numerical comparisons. This approach,
named DOMINO, preserves its advantage of simplicity and
easiness of implementation, and still demonstrates its
efficiency when dealing with a wide range of 802.11 MAC
misbehavior. However, the heuristic nature of the approach
limits its applications to specific scenarios.

The sequential probability ratio test (SPRT) method is
used in [5], [6], [7] to detect the 802.11 backoff misbehavior.
The detection decision is made when a random walk of the
likelihood ratio of observations (given two hypotheses)
rises to be larger than an upper threshold. The main
advantage of SPRT is that it can reach decision very fast,
given the complete knowledge of both normal behavior
and backoff misbehavior strategy [20]. However, in a
realistic setting, the strategy of malicious nodes is hard to
know in advance. Further, the existing work normally
assumes that the backoff timer of each node is observable,
which is again hard to achieve in practice because the
transmission attempts involved in a collision are impos-
sible to be distinguished. In our design, we monitor the
successful transmission of the tagged node as the observa-
tion measurement.

The authors in [3], [4] utilize the Kolmogorov-Smirnov
significance test for backoff misbehavior detection. This
test is able to make the decision by measuring the
distribution of the idle time between consecutive successful
transmissions from a tagged node and comparing it to the
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normal backoff behavior. The detection method in [3], [4]
requires estimation of the collision probability of a packet
transmitted. However, an inaccurate simplification there is
to consider that packets from the misbehaving node and
those from the normal nodes have the same collision
probability. Such inaccuracy impacts both the performance
of false positive rate and detection delay, to be demon-
strated in Section 7. Furthermore, as a batch test method,
the K-S statistic has its own drawback. Fixed-size data
samples are needed to perform the test each time, which
makes real-time detection difficult.

In our preliminary work [19], we adopt the nonpara-
metric CUSUM test [12] for the backoff misbehavior
detection, which has the advantages of both real-time
detection and no requirement of a priori knowledge of the
misbehavior strategy. The detector in [19] directly counts
the number of successful transmissions from a tagged node
within an observation window' to get a sample. Although
such a sampling method is easy for implementation, the
observation window needs to linearly increase with the
number of nodes in the network to fairly count transmis-
sions from each node, which as a result will increase the
detection delay. In this paper, we develop the new FS
detector, which takes every successful transmission over the
network as a sample to trigger its state change. Such a
sampling method is independent of the network size and
turns out to result in good performance in both false
positive rate and detection delay, as to be demonstrated
later in this paper.

A common research issue among most of the existing
schemes for misbehavior detection is their dependency on
heuristic parameter configuration and experimental perfor-
mance evaluation, which largely limits the flexibility and
robustness of the schemes. To address this issue, in [19], we
propose a Markov chain-based analytical model to theore-
tically analyze the detection performance and quantitatively
configure the system parameters. In this paper, we develop
the analytical model according to the newly proposed FS
detector. Our analysis demonstrates performance improve-
ment of the FS detector in real-time misbehavior detection
over the original detector in [19]. Also, we demonstrate the
robustness of the FS detector under varying network size,
against the short-term unfairness, and in the situation when
both UDP and TCP traffic exists.

3 SysTEM MODEL

3.1 IEEE 802.11 DCF

There are two major functions in the IEEE 802.11 protocols:
the point coordination function (PCF) and the distributed
coordination function (DCF). The PCF is a centralized
function and is an optional feature in 802.11. Here, our
focus is on the more widely used DCF protocol. In the DCF,
every node contends for access to the wireless medium
following the CSMA/CA function [1]. When a node
attempts to transmit a packet, it needs to sense the medium
idle for a specified time. The time is divided into slots of
constant duration, and a node can only transmit at the
beginning of a slot time. If the medium is not idle, the node

1. An observation window is defined as a certain number of consecutive
successful transmissions over the whole network [19].
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will enter a backoff stage and defer the transmission
according to a timer before attempting the next transmis-
sion. This backoff timer is a random value uniformly
selected from the range [0,CW,,;, — 1], where CW,,;, is
called the minimum contention window with a standard
value of 32. The timer will decrease if the medium is
continuously sensed idle and freeze whenever the medium
is sensed busy. After the timer reaches 0, the node will
attempt another transmission. Each unsuccessful transmis-
sion will double the contention window size until it reaches
the maximum value CW,,,., = 2" CW,,;n, where m is called
the maximum backoff stage with a standard value of 5. This
operation is also referred to as the binary exponential backoff
scheme. After a successful transmission, the node will reset
the contention window to CW,,;;, and continue sensing the
medium if it has more packets to transmit.

3.2 Backoff Misbehavior in IEEE 802.11 DCF

As a distributed protocol, the DCF assumes that every node
in the network operates in accordance with the standard to
obtain a fair share of the wireless medium. Since there is no
central controlling unit that assigns the backoff timer for
each node, a malicious node can continuously choose a
small backoff timer and then gain significant advantages in
channel access probability over others. Moreover, because
the increased transmission probability of the malicious
node causes more collisions, normal nodes are forced to
further exponentially defer their transmissions as they
operate according to the protocol. The backoff misbehavior
can drastically decrease the transmission probability of
normal nodes and subsequently severely reduce their
throughput. In an extreme case where a malicious node
sets its own backoff timer to a very small constant value, it
will lead to denial of service (DoS) of the whole network.
Thus, a detection scheme capable of quickly identifying the
misbehaving malicious node is highly desired.

4 DEeTECTOR DESIGN

We consider a saturated situation that a node always has
data to send when the channel is available. Although a
network in practice is not always saturated, the saturated
scenario is of meaningful concern in the context of selfish
misbehaving. If the network is lightly loaded, a misbehav-
ing node will not impact much the throughput of normal
ones. When the network is close to full utilization, the data
buffer in every node have a very small probability to be
empty, where the saturated model is a good approximation.

4.1 The Observation Measure

Consider a tagged node v. In our detection system, the
observation measure is an indicator of whether a successful
transmission over the network belongs to the tagged node v,
denoted as I”. We take the popular modeling technique [1]
that each node independently accesses an idle channel for
transmission with a probability determined by its conten-
tion window size. If we use ¢! to denote the probability that
a successful transmission over the network is from node v,
the probability distribution of IV is given by

q. if k=1,

P{]v:k’}:{l—qg if k=0. (1)
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In a normal situation that every node follows the 802.11
DCEF standard, it can be seen that ¢" = + due to fair channel
sharing, given N nodes in the network. If node v is a
malicious node taking a smaller contention window size, it
will achieve a ¢ larger than 3 and, thus, a larger portion of
the network throughput. In Section 6, we will present how
to calculate ¢ given the contention window size. The
distribution of I” in (1) is the basis to establish our
analytical model.

Remark. In an 802.11 network, a node that has just
accomplished a successful transmission will have ad-
vantages in grabbing the channel for next transmission in
a short period [13]. This is referred to as short-term
unfairness and is inherent to the 802.11 backoff mechan-
ism. Such an issue implies correlations among the
channel accesses, which may impact the accuracy of (1)
to model the successful transmission of the tagged node
based on the assumption of independent channel access.
In [19], we apply a shuffling mechanism to observation
samples to mitigate the impact of short-term unfairness.
In Section 7, we provide detailed analysis to show that
the FS detector is inherently robust against short-term
unfairness, and the detection based on (1) does give
accurate decisions. The fairness issue also exists when
both user datagram protocol (UDP) and transmission
control protocol (TCP) traffic flows exist in the network,
where the TCP traffic tends to be overwhelmed by UDP
traffic due to its congestion control mechanism. In
Section 7, we also discuss how to apply the FS detector
for robust performance when both UDP and TCP traffic
flows exist in the network.

4.2 Fair Share Detector

Let {I,,n =0,1,...} be the sequence of sample values of I*,
observed each time a successful transmission appears on
the channel. Here, we drop the superscript v for easier
presentation considering the clear context. There are N
nodes and one access point (AP) in the network. Suppose
that the initial value of the detector is Xy = 0. If a successful
transmission upon the nth observation is from the tagged
node, ie., I, =1, the detector X, increases by N —1;
otherwise, I,, = 0, and X,, decreases by 1 until it reaches 0.
The intuition of this design is as follows: In the normal
situation, each node roughly takes turn to transmit; the
increase of X,, caused by one successful transmission from
the tagged node can then be equally offset by the successful
transmissions from other N — 1 nontagged nodes. Thus, the
detector X,, will fluctuate around a low value close to zero
in the normal situation. On the other hand, when the tagged
node turns to misbehave and obtain more chances to
transmit, it is not difficult to see that X, is going to quickly
accumulate to a large positive value.

The behavior of the FS detector can be mathematically
described as

Xn+1 = (Xn + (Nln - 1))+

X — 0. (2)

where (z)* = z if > 0 or 0 otherwise. We can see that (2) is
actually in the form of a nonparametric CUSUM detector

[12]. Let h be the detection threshold. The decision rule of
the detector in step n is

1
6”_{0

where 6§, is also an indicator function of whether the
detection event happens or not. The detector value X,, will
be reset back to 0 as soon as it exceeds the threshold and the
detection procedure starts over again.

i X, > h,
it X, <h, (3)

5 MARKov CHAIN-BASED MODEL

Consider the sequence {X,,} as a discrete random process,
which takes values from a finite set A = {0,1,2,...,h}. The
process is said to be in state ¢ at time n if X,, =i with i € A.
The state transition happens when a successful transmis-
sion over the network is observed. According to (2), the next
state X,; depends only on the current state X, and is
independent of any other previous states, where the
transition probability is

Pi,j = P{Xn+l = ]|Xn = Z} 277 €A (4)

Thus, the random process {X,} satisfies the Markov
property and can be modeled as a discrete-time Markov
chain.

Given the decision threshold h, the Markov chain is then
described by a (h+1)x (h+1) transition probability
matrix as

Py Pun P By,

Py Pu P Py,
P= . . . .

BzO -Phl Ph2 Bzh

This transition probability matrix can be divided into three
distinct groups based on the operation of the FS detector.
Group 1 consists of P;; for i = 0 and j € [0, h], with values

P{I, =0} ifj=0,
po_ ) Pl,=1} ifj=N-land N-1<h, (5)
7Y P{I,=1} ifj=hand N—1>h,
0 otherwise.

This group is related to the transitions from state 0 to other
states. According to the state transition (2), the detector
variable X,, jumps out of state 0 only when the observed
successful transmission is from the tagged node, that is,
I, = 1. Further, X,, makes a transition to either N — 1 or h
depending on whether NV — 1 is greater than h or not. Note
that the state h in fact incorporates all possible states
X, > h, as the detector will raise an alarm when the state
hits h.

Group 2 consists of P;; for i € [1,h—1] and j € [0,h],
with values

P{I,=0} ifj=i—1,
P{I,=1} ifj=i+N—-1and
_ i+ N—1<h,
Pi=9 pir, =1} ifj=hand (6)
i+ N—1>h,
0 otherwise.
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This group describes the typical behavior of the detector.
The state can transit to left (i.e., to a smaller value) when
I, =0 or to right (i.e., to a larger value) when I, =1,
according to the state transition (2).

Finally, group 3 consists of P;; for i =h and j € [0, h],
with values

(1 ifj=0,
Phj = {O otherwise. (7)

This group is related to the transitions out of state h. Since
the detector value will be reset to 0 as soon as it reaches or
exceeds h, Py = 1.

6 THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct theoretical performance analysis
of the FS detector based on the Markov chain model in
terms of the three fundamental metrics to change detection:
average false positive rate, average detection delay, and
missed detection ratio under a detection delay bound. Then,
we show how we can configure the system parameters to
achieve guaranteed performance. We also analyze the
performance of the detector when the number of nodes is
varying, which is a typical scenario in the 802.11-based
wireless networks.

6.1 Average False Positive Rate

The average false positive rate Pp, is the rate that the
detector value X, hits state i given the fact that there is no
node in the network misbehaving. According to the theory
on the discrete-time Markov chain, such a rate is equal to
the steady-state probability that the Markov chain describ-
ing the FS detector stays at h in the normal condition.

In the normal condition with a fair share of the channel
access, we have ¢ = % for a tagged node. We can calculate
the distribution of I,, according to (1), and further obtain the
transition probabilities matrix P according to (5)-(7).

Let (m,...,m,) denote the steady-state probabilities of
the Markov chain, which can be solved from the following
equations:

h
T = Zﬂzpij, j€{0,...,h}, (8)
=0

Z?Tj =1. (9)

Then, we can get the average false positive rate

pr:ﬂ'h. (10)

The analytical result (10) allows us to numerically
examine the impact of the fundamental parameter h on
the average false positive rate Py, of the FS detector. As an
example, we compute the results for a network with N = 10
nodes, and the results are illustrated in Fig. 1. From the
figure, we can observe that a larger h yields a smaller false
positive rate, as expected.

6.2 Average Detection Delay

In this section, we analyze the average detection delay
denoted as E[Tp], which is the average number of samples
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Fig. 1. Average false positive rate.

observed from the moment that the tagged node starts to
misbehave until the misbehavior is detected. With the
Markov chain under the abnormal condition (abnormal
Markov chain), E[Tp] can be computed as the expected
number of transitions required for the state variable to hit
state h, starting from the moment when the misbehavior
starts. To carry out the analysis, we need to find the
transition probabilities of the abnormal Markov chain and
determine the initial state of the FS detector when the
misbehavior starts.

6.2.1 Transition Probabilities under the Misbehavior

We consider a network consisting of two classes of nodes.
Class 1 includes the one misbehaving node with a small
minimum contention window CW,,;, denoted as W', and
class 0 includes all the normal nodes with the standard
minimum contention window denoted as W'. According to
the classic modeling approach for the 802.11 DCF [1], we
consider that each node independently accesses an idle
channel for transmission. Let p; denote the probability that
aclass i (i € 0,1) node transmits at a random time slot and
p. denote the collision probability of a class i node. Also
recall that N is the number of nodes and m is the
maximum backoff stage. According to [1], we have the
following equations:

0_ 2(1 - 2p?)
by = (1 — QPQ)(WO +1) +p2W“(1 _ (2p2)m) )
1 2(1—2p})

p=1-(-p)(-p)""
pl=1—(1—p)""

from which the four parameters p, p;, p, and p! can be
solved.

Note that a node can get a successful transmission under
the circumstance that there is no collision while the node
transmits. Thus, from the solutions of (11), we can obtain
the probability that a node gets a successful transmission at
a random time slot:

)

pl=p/(1-p)), (12)

p=p;(1=p). (13)

We can then calculate the probability ¢, that a successful
transmission over the network is from the malicious node as
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X P

=P 14
SN 14)

Using ¢, in (1), we can obtain the distribution of I,, for the
misbehaving node; using this distribution in (5)-(7), we can
then compute the transition probability matrix P for the
abnormal Markov chain.

It is worth noting that although we only include two
classes of nodes in the above analysis, the model of (11) to
(14) can be easily extended to cases where multiple classes
of misbehaving nodes with different intensities of misbe-
havior exist. This will enable us to analyze much more
complicated misbehaving scenarios. We will discuss this
issue in Section 8.

6.2.2 Initial States

A natural thought of the initial state of X,, is 0 when the
misbehavior starts. However, this may not be the case;
before a malicious node starts to misbehave, it can behave
like a normal node and still affect X,,. Thus, X,, can be
initially at any state following the normal Markov chain
except for state h, as we do not consider an already
“alarmed” state as an initial state.

We can calculate the steady-state probabilities of the
normal Markov chain according to (8) and (9). Since we are
interested in detection starting from an unalarmed state,
under such a constraint the conditional initial state
probabilities should be

/ T
. =

i W fOI‘ZG{O,,h—l}
=0 "t

(15)

6.2.3 Average Detection Delay

As we have various initial states, the average detection
delay E[Tp] should be calculated as the weighted average of
the expected numbers of transitions from every initial state
to state i based on the transition probability matrix P for
the abnormal Markov chain.

Let pip, @ €[0,h —1], denote the expected number of
transitions for state i to state h. According to [21], the values
of w;;, can be solved from the equation:

Mi}L:1+ZH7‘M7‘}L7 (&S {Oa“'ah_l}v
r#h

(16)

where 15” is the transition probability from state ¢ to r of P.
Based on the solutions of (15) and (16), we can obtain the
average detection delay E[Tp] as

h—1
E[Tp] = wpin- (17)

=0

The analytical result (17) allows us to numerically

examine the impact of h on the average detection delay
E[Tp]. As an example, we compute the results for a network
with N = 10 nodes, and the results are shown in Fig. 2 with
four misbehaving intensities CW,,;, =4,8,16, and 24,
respectively. As we expect, the curves in Fig. 2 show that
a more intense misbehavior leads to a shorter detection
delay. Also, we observe that a smaller h yields better
performance in average detection delay.

EIT,]

Fig. 2. Average detection delay.

6.3 Missed Detection Ratio

In this section, we discuss the missed detection ratio,
denoted as P,,4. The FS detector exploits the nonparametric
CUSUM test. The missed detection ratio is not often
considered in the context of CUSUM test due to its
“nonstop until detection” property. We, however, examine
P,,q under a given detection delay constraint D, which is of
importance regarding real-time detection.

The detection event happens only when X, hits state h.
Thus, the missed detection ratio P,; under the delay
constraint D is the summation of the probabilities of X,
staying at a state other than h at time D. With the transition
probability matrix P, the missed detection ratio can be
computed in an iterative manner. Let the row vector ﬁ( j) =
[Po(4),--.,Pu(j)] denote the probabilities of the state
variable at step j with 0 < j < D. The computation starts
from the initial states given in (15), setting

Py(0) = m;

fori € {0,...,h—1}, (18)

P,(0) = 0. (19)

At each transition step j € [0, D — 1], the state probabilities
are updated as

P(j)=P(-1)-P, (20)

At each step, P,(j) is set to 0 for next step computation
because we are interested in the missed detection cases. The
missed detection ratio under the delay bound constraint D
can be obtained as

h—1
Pni=Y_P(D).

i=0

(22)

Fig. 3 demonstrates the missed detection ratios P,,q of
our analysis under the delay constraints D = 80,100, 120,
and 140, respectively, for a misbehaving node with the
moderate misbehavior of CW,,,;, = 16. We observe that the
larger the delay constraint is, the lower the missed detection
ratio will be. In other words, the probability of detection
increases with a cost of longer delay. Also, a smaller
detection threshold h yields a lower missed detection ratio.

6.4 Configuration for Guaranteed Performance

The above theoretical analysis provides us a guideline
to configure the system parameter h for guaranteed
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Fig. 3. Missed detection ratio.

performance in a target scenario. For each performance
metric, we can obtain the feasible ranges of h to satisfy
the performance constraints. With the intersection of the
parameter ranges under all the constraints, a proper
configuration of i can be obtained to meet the performance
requirements of all the metrics. Moreover, once we
determine the configuration parameter, we can explicitly
estimate the performance measures given a misbehaving
scenario. In practice, as we do not have a priori knowledge
of the misbehavior, the analytical model allows us to
conservatively configure the system so that even the
misbehavior with a low intensity can be detected with
good performance. For example, if we select h =40 for a
network with N = 10, our analytical model indicates that,
even for the moderate misbehavior with CW,,;, = 16, we
can target a high level of performance with the average false
positive rate of 0.005, the average detection delay of 31.8357
samples, and the missed detection ratio of 0.0141 with the
delay constraint D =100. In Section 7, we will use
simulation results to demonstrate that our target perfor-
mance measures are indeed achievable.

6.5 Detection with Network Size Change

In an 802.11-based wireless network, it is typical that nodes
are mobile and, thus, the number of nodes (i.e., the network
size) changes from time to time. The proposed FS detector is
robust against such a scenario. As we directly include the
number of nodes N in the detector design, when N changes,
the detector can adjust and respond in real time.

Fig. 4 shows the average false positive rates Py, of the
detector versus the number of nodes N, at h = 80.
The threshold h is intentionally set to be greater than the
maximum number of nodes to avoid alarm being triggered
by just one successful transmission from the tagged node.
As shown in Fig. 4, there is a dent on the curve at N = 40
and Py, has a sharper increase when N gets greater than 40.
This is because, when N < 40, at least three or more
consecutive successful transmissions from the tagged node
are needed to drive X, to h from an initial state of 0, raising
a false alarm; however, when 41 < N < 70, it will take only
two consecutive transmissions to reach h, which largely
increases the possibility of false positive. Furthermore, note
that Py, does not monotonically increase with N and has an
upper bound of Py, = 0.0055. The explanation is that, when
the number of nodes contending for the channel becomes
larger, the transmissions from a tagged node are more likely
to be interrupted by transmissions from those nontagged
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Fig. 4. Impact of network size change on average false positive rates at
h = 80.

nodes, and the accumulation of the detector X,, will be more
aggressively offset by such nontagged nodes, thus resulting
in a smaller Py,. If the target performance of Py, < 0.0055 is
allowed, we can see that the configuration h = 80 satisfies
the false positive performance requirement even when N
changes dynamically in a wide range. Note that a typical
802.11-based wireless local area network covers up to tens
of users.

Fixing h = 80, we now investigate the average detection
delay E[Tp| of the detector for different misbehavior
intensities, indicated by the CW,,;,, value of a misbehaving
node, with results shown in Fig. 5. The misbehavior
intensities with CW,,;,, > 25 are not included in our
discussion, as their effects are minimal. Practically, a
misbehaving node needs to choose more intense misbe-
havior, for example, CW,;, < 16, to gain more benefits
from the network throughput. From Fig. 5, we see that for
misbehavior in this range, the change of N does not affect
E[Tp] much. The reason is that, when a misbehaving node
grabs the channel, very likely it will consecutively send a
certain number of packets, driving the detector to hit the
threshold. For a smaller value of N, it may just take a
couple of more samples for the detector to hit the
threshold (note that each transmission from the tagged
node increases the detector state by N — 1), which only
slightly increases the detection delay. With less intense
misbehavior (16 < CW,,;, < 25), we do observe obviously
larger detection delays for a small N. The reason is that,
when the misbehaving intensity is low, the accumulation
procedure of X, is more often to be offset by transmis-
sions from those nontagged normal nodes; for a small N,

250
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——N=30
—A—N =50

200 —o—N=70

150

E[T,)

100
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Fig. 5. Impact of network size change on average detection delays at
h = 80.
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Fig. 6. Impact of network size change on average detection delays at
Py, = 0.005.

it will take even more samples from the misbehaving node
to raise the alarm, leading to a longer detection delay.

It is noteworthy that the relationship between N and
detection delay in Fig. 5 is not rigorously monotonic. Such
phenomenon is due to two contradicting factors: Given the
CWinin, the misbehaving node will get less transmissions
when N gets larger and, thus, less chances to accumulate
X,, potentially increasing the detection delay; the increase
of X, (by a value of N — 1) caused by one transmission from
the misbehaving node, however, becomes larger too,
potentially decreasing the detection delay. In summary,
the results in Fig. 5 again demonstrate that the FS detector
with a fixed threshold (larger than N) has a robust
performance for a typical misbehaving scenario, even when
the number of nodes in the network changes.

In a situation where a fixed constraint on Py, is
imposed, we can dynamically calculate the h value
corresponding to a certain N through the analytical
model. Further, if we do the calculation beforehand and
maintain a table of “h versus N” values under the given
Py, constraint, we can quickly adjust ~ as soon as changes
on N are observed. Fig. 6 shows the average detection
delays E[Tp] of the detector for different misbehaving
intensities, given a false positive constraint as Py, = 0.005.
Similar to Fig. 5, Fig. 6 shows that the detection delays
under different N are similar when the misbehavior is
very intense. Under a lower misbehaving intensity (i.e., a
larger CW,,;,), the detection delays increase more ob-
viously with the number of nodes, because a larger
threshold £ is required for a larger N to meet the false
positive requirement. However, the delay increase is not
dramatic. Even for CW,,;,, =25 and N = 40, it only takes
about 120 successful transmissions over the whole net-
work to detect the misbehavior.

6.6 Comparison with the CUSUM Detector in [19]

To show how we have improved in real-time misbehavior
detection, we compare the FS detector to the detector
developed in our preliminary work [19], referred to as the
“original CUSUM detector” for convenience. The observa-
tion measure of the original CUSUM detector is the number
of successful transmissions of the tagged node in every M
successful transmissions over the whole network. It means
getting one observation sample for the original CUSUM
detector requires M successful transmissions, whereas the
FS detector will update state upon every successful

—»— FS detector, N=10
—— FS detector, N=20
—&— Original CUSUM detector, N=10 [19]
—o6— Original CUSUM detector, N=20 [19]

Fig. 7. Comparison with the original CUSUM detector in [19] at
Py, = 0.005.

transmission over the network. Also, M needs to be at
least as large as the number of nodes N and linearly
increase with N to fairly count transmissions from each
node. Moreover, besides h, there is another parameter v in
the original detector design, which is the upper bound of
the observation measure’s expectation. To determine a
proper u, we need to take into account both the sample size
M and the number of nodes N, adding the complexity of
the detection system. In the FS detector, u is not present,
which leads to one less parameter impacting the detection
performance and, thus, makes parameter configuration
much simpler.

Fig. 7 shows the average detection delays of the two
detectors for different misbehavior intensities under the
same false positive constraint of Py, =0.005. Here, we
consider the cases of N =10 and N =20. For the FS
detector, given the Py, and N, the threshold h can be
determined from the analytical model. With 5, the detection
delay for a given misbehaving intensity can then be
calculated and plotted in Fig. 7. We intentionally configure
the original CUSUM detector for a small detection delay so
the advantage of the FS detector can be demonstrated more
convincingly. The sample size M for the original CUSUM
detector is set to its minimum value N (i.e., 10 and 20 for the
two cases considered, respectively) to minimize the impact
of the observation window size on the detection delay. With
such an observation window selection, on average one
successful transmission from each node can be expected in
each window, i.e., u=1. Given the Py, N, and u, the
parameter h can then be determined from the analytical
model in [19]. With h and u, the detection delay for a given
misbehaving intensity with the original CUSUM detector
can be calculated and plotted in Fig. 7.

As shown in Fig. 7, for the same N, the FS detector shows
clear advantages over the original CUSUM detector,
especially when the misbehavior becomes less intense.
Observing the delays of the original CUSUM detector, we
can see that the delays with N = 20 are roughly two times
of the delays with N =10 for almost all the misbehavior
intensities. The fact clearly indicates the impact of the
observation window size on detection delay in the original
CUSUM detector. Another advantage of the FS detector is
that its detection delay curves are quite flat against the
misbehaving intensity and not much impacted by the
network size N, showing very robust performance.



154 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 1,

CDF of X

—©— Simulation
—— Analytical

5 10 15 20 25 30 35 40

Fig. 8. CDF of X,,.

7 SIMULATION RESULTS

7.1 Simulation Setup

We establish an 802.11 DCF-based wireless network
consisting of 10 competing nodes (/N = 10) and an access
point through ns-2 [22] simulation. We first consider that
the network works under the saturated condition and every
node sends packets with UDP toward the AP. Then, we
include the TCP traffic in our simulation to further analyze
the performance of the FS detector in more general
scenarios. The AP also acts as the detection agent that
monitors the transmissions from every competing node
with a separate FS detector. The nodes are located close
enough to sense the transmissions from each other and,
thus, avoid the hidden terminal problem. There is one
misbehaving node among the 10 competing nodes, which
accesses the wireless channel using the binary exponential
backoff scheme but can manipulate its minimum contention
window CW,,;, to any value between 1 and 32.

Due to the conflicting nature of the three performance
metrics (average false positive rate, average detection
delay, and missed detection ratio), it can be difficult to
find the system configuration parameter that achieves best
performance at all fronts. Using our analytical model, we
find that, for V = 10, setting the detection threshold h = 40
can achieve a good tradeoff among all the metrics
(referring to Section 6.4). Therefore, in our simulation, if
not specified, we set h =40 to further evaluate the
performance of our detection.

7.2 Robustness against Short-Term Unfairness

In an 802.11 network, a node that has just accomplished a
successful transmission will have advantages in grabbing
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Fig. 9. Average false positive rate.
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Fig. 10. Average detection delay with CW,,;, = 8.

the channel for next transmission in a short period [13].
This is referred to as short-term unfairness and is inherent to
the 802.11 backoff mechanism. Such an issue implies
correlations among the channel accesses, which impact
the accuracy of the transition probability calculation based
on the assumption of independent channel access. The
system configuration based on an inaccurate model can
lead to inaccurate detection results. In this section, we study
how the short-term unfairness affects the performance of
our detector.

We first examine the impact of short-term unfairness on
the distribution of the detector X,, under the normal traffic
condition. In Fig. 8, we present the simulation results of
the cumulative distribution function (CDF) of X,, com-
pared with the analytical CDF. Note that even though the
analytical results are based on the independent model of
(1), the two curves are still close to each other. We then
examine the average false positive rate Py, versus h,
comparing the analytical results with the simulation
results in Fig. 9. Again, despite a bigger gap, when h is
smaller, the Py, curve obtained from simulations still
largely resembles the analytical one. The observations
show that our FS detector is robust against the impact of
short-term unfairness.

We then obtain the average detection delays E[Tp] under
different misbehaving intensities. Figs. 10 and 11 present
both the simulation and analytical E[Tp]| curves versus h for
CWpin, = 8 and CW,,,;, = 16, respectively. The closeness of
the two curves in both cases again confirms the robustness
of the FS detector against the short-term unfairness.

Technically, the FS detector by nature can mitigate the
impact due to the short-term unfairness. In the normal
situation, every node in the network has the same
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Fig. 11. Average detection delay with CW,,;,, = 16.
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TABLE 1
Comparison of Analytical and Simulation
Results with N =10, h = 40, D = 100

pr E[T[)] Pmd
Analysis 0.005 31.8357 | 0.0141
Simulation | 0.0076 28.5744 | 0.0255

opportunity to experience a short period of advantages in
transmissions. At a sampling moment, if the tagged node
under observation is accessing the channel more aggres-
sively due to short-term unfairness, it will increase the
detector state value more aggressively according to (2),
tending to be false positive. However, if at other sampling
moments, those nontagged nodes are accessing the channel
more aggressively, it will in turn decrease the detector state
value more aggressively and mitigate the false positive
effect. Therefore, as an aggregate effect, the FS detector only
degrades slightly in the false positive performance. In the
misbehaving situation, extra channel access (in addition to
that resulting from the backoff misbehavior) due to the
short-term unfairness effect in fact benefits the misbehavior
detection, with the detector being driven to hit the threshold
h sooner, as shown in Figs. 10 and 11. We did design a
shuffling mechanism based on the similar idea as that
applied in [19] to address the impact of the short-term
unfairness, and found that it would sacrifice a lot in
detection delay to achieve just a moderate gain in mitigating
false positive rate. Thus, according to the theoretical and
simulation investigations given above, we decide to apply
the FS detector without an extra mechanism for the short-
term unfairness issue.

7.3 Performance Guarantee

Given the configuration parameter h =40, we compare
the target performance measures with the simulation
results under the same setting, shown in Table 1, to
examine whether the target performance is guaranteed.
We can see that simulation results are very close to the
target values in all three performance metrics. The small
gap between the values is largely due to the variance in
the observation samples; also the effect of the short-term
unfairness is not 100 percent overcome according to Figs. 8
and 9. Considering such a small gap, in practice, we can
on purpose select configuration parameters to conserva-
tively provision the detection performance.

With the same parameter configuration as above, we
compare our FS detector to the sequential K-S test and the
optimal SPRT for 802.11 backoff misbehavior detection
used in [3] in Fig. 12. The sample used in those solutions is
collected every successful transmission of the tagged node,
whereas in our scheme, the sample is collected every
successful transmission from any node in the network. The
average detection delays in terms of the number of
successful transmissions from the tagged node for different
detection schemes are compared in Fig. 12. For a fair
comparison, we map our samples (the total number of
successful transmissions over the network) to that used in
[3]. For such a mapping, we only need to count the number
of successful transmissions from the tagged node within
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Fig. 12. Comparison with the detection schemes in [3].

the total successful transmissions. Also note that the
desired false positive rate in [3] is fixed at Py, = 0.05,
which is one order larger than our target 0.005 as given in
Table 1. Even with a much more strict constraint on Py,
Fig. 12 shows that our detector has comparative detection
delays against high intensities of backoff misbehavior and
becomes superior to all other schemes as the misbehavior
turns less intense.

It is interesting to discuss why our FS detector has better
performance even than the optimal SPRT (when the
misbehaving intensity is not high) in [3]. An optimal SPRT
has the “optimal” performance only when the normal
behavior distribution could be accurately obtained. How-
ever, to establish the normal behavior distribution, the
detectors in [3] need to first estimate the collision probability
over the 802.11 channel. In [3], there are two aspects of
inaccuracy in estimating the collision probability, which
degrade the performance of false positive rate and detection
delay, respectively.

The first aspect of inaccuracy in [3] is that the collision
probability is estimated from only tens of samples, over
which the variance may lead to overestimating the collision
probability. The behavior monitored by the detector is the
idle time between consecutive successful transmissions; an
overestimated collision probability will lead to an over-
estimated idle time (longer than its real value). With such
an estimation error by the detector, a normal idle time
observed will appear smaller than the “thought-to-be”
normal behavior and, thus, misunderstood as misbehaving.
That is, the overestimation of the collision probability leads
to a higher false positive rate.

The second aspect of inaccuracy is that, according to the
IEEE 802.11 model, a conditional collision probability
(given that the tagged node is sending a packet) should
be used to characterize the backoff procedure and further
estimate the distribution of the idle time between con-
secutive successful transmissions. The study in [3], how-
ever, uses an unconditional collision probability estimated
over all nodes to approximate the conditional one. Regard-
ing the misbehaving node, the unconditional collision
probability will be an underestimate of the conditional
one. The conditional collision probability associated with
the tagged misbehaving node is determined by transmis-
sions from other normal nodes. When estimating with an
unconditional collision probability, transmissions from the
misbehaving node are also included in the estimation [3];
note that many transmissions from the misbehaving node
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Fig. 13. Average detection delay for TCP traffic.

will not experience collisions due to the misbehaving
node’s aggressive access to the channel. Thus, the collision
probability will be underestimated, which then makes the
detector to underestimate the normal idle time between
consecutive successful transmissions. Such underestimation
of the normal model makes the misbehavior deviation less
obvious and incurs a longer time for detection.

7.4 Performance with UDP and TCP Traffic

We also consider scenarios where TCP traffic exists in the
network. Fig. 13 shows the average detection delay of a
misbehaving node versus the misbehaving intensity in a
network of 10 nodes. The detection threshold h = 40. We
compare the detection delays in the two scenarios that all
the nodes send TCP traffic or saturated UDP traffic to the
AP, respectively. As shown in Fig. 13, in most cases, the
detection delay in the TCP scenario is larger than that in
the UDP one, especially when the misbehavior is more
intense. The reason is that TCP multiplicatively decreases
the transmission rate upon a packet loss due to its
congestion control mechanism; the impact of congestion
control is more obvious in wireless networks, where
collisions are common. The congestion control mechanism
by nature mitigates the selfish misbehavior. Aggressive
transmissions will lead to more collisions, which in turn
decreases the sending rate through the congestion control.
Thus, it takes a longer time to detect (compared to the UDP
case) the misbehavior due to the mitigating effect of the
congestion control. With a low misbehaving intensity
(CWinin > 20), the congestion control effect applies more
to the normal nodes, where the detection delay will be
shorter than that in the UDP case. In Fig. 13, we also plot
the 95 percent confidence interval, measured from a large
number of detections (in the order of 10°%), which
demonstrates that TCP congestion control brings a high
degree of dynamics to the system.

A more general scenario would be a wireless network
consisting of both TCP and UDP nodes.” There are three
possible cases. 1) All the nodes have a normal behavior. In
this case, the FS detector will have a high false positive rate
to indicate a certain normal UDP node as a misbehaving
node, because the throughput of UDP nodes will over-
whelm those TCP ones. 2) A misbehaving UDP node exists.

2. Without loss of generality, we consider the situation that some nodes
have a UDP flow and others have a TCP flow. If a node has both UDP flows
and TCP flows, in a saturated situation, the aggregate traffic behaves similar
to the UDP traffic.

VOL. 13, NO. 1, JANUARY 2014

Detected

Matching
fhe detected ID\, Y€S

Send the
detected node

ID to detector 1

Monitor traffic

FS Detector 1: | ¢ nodes

Detected

Monitor traffic
from UDP
nodes only

FS Detector 2:
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Note that when both UDP and TCP flows exist, it is
impossible for a TCP node to aggressively grab more
throughput due to the congestion control. As a misbehaving
UDP node will easily overwhelm those normal TCP nodes,
the detection delay of a misbehaving node will be even
shorter than that in an all-UDP case. 3) To avoid being
detected, a smart misbehaving node may establish a TCP
connection to the AP, but does not implement the
congestion control mechanism (i.e.,, actually transmit
according to UDP).

For robust detection performance in the complex
scenario when both UDP and TCP traffic flows exist, we
design a dual-detector implementation as shown in Fig. 14.
FS detector 1 monitors traffic from all the nodes; if a
detection event happens, detector 1 further checks whether
the tagged node claims to use TCP or UDP. If it claims to
use TCP, detector 1 can then determine that it is a smart
misbehaving node actually using UDP (case 3 mentioned
above); if it claims to use UDP, detector 1 turns to listen to
the decision from FS detector 2 (to avoid false positive in
case 1). FS detector 2 starts simultaneously with detector 1
but monitors only the traffic from the UDP nodes. When
detector 2 identifies misbehavior from a UDP node, it sends
the detected node ID to detector 1. If this detected node ID
matches that alarmed by detector 1, the dual-detector
system will then determine that the node is misbehaving
(case 2). We run simulations to verify the performance of
the dual-detector. For example, in a network of 10 nodes
where five nodes use TCP and the other five nodes use
UDP, the average false positive rate over a normal UDP
node is 0.0047. Also, for the moderate misbehavior of
CWpin = 16, the average detection delay of a misbehaving
node is 18.1953 when it lies to be a TCP node. The detection
delay increases to 36.4728 (for confirmed detection in both
detectors) when the attacker is honest with its UDP
behavior, which is similar to that in the all UDP case listed
in Table 1.

8 DiscussIOoN

8.1 Detection of Multiple Misbehaving Nodes

In this section, we discuss how our analytical model can be
extended to the cases where multiple classes of malicious
nodes with different intensities of misbehavior exist. The
key to the analysis is to obtain the abnormal Markov chain,
which in fact is determined by the probability that a
successful transmission over the network is from the tagged
malicious node.

Consider a network of N nodes, k of which are malicious
and the rest are normal. Suppose that malicious node i sets
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Fig. 15. Average detection delays under two misbehaving nodes.

its minimum contention window CW,,;, as W' and all the
N — k normal nodes use the standard minimum contention
window denoted as W". We can expand (11) to have the
following equations:

0 2(1-240)
i — (1—2p) oo (1 (2) ")

I

r 2(1—2;{%)
P = (1=2p) W) piwe (1—(208) ")’
N-k-1

P =1-TI, (1—p))(1—p)) :

& k-1 ; N—k
pe =1-IIo (L=p) (L =p))"
From the solutions of (23), we can obtain the probability
that a node gets a successful transmission at a random
time slot:

pl=p/(1-p)), (24)

Pl =pi(1=pp). (25)
Then, we can calculate the probability ¢/ that a successful

transmission over the network is from the tagged malicious
node [ with CW,,;, = W' as

A

Sl (N — k)l
Using ¢, in (26), we can obtain the transition probability
matrix of the abnormal Markov chain f’l; using P and
initial states of the detector when misbehavior starts, which
are determined in the same way as in Section 6.2.2, we can
analyze average detection delay and missed detection ratio
for the tagged malicious node [ accordingly.

We consider an example that there are two misbehaving
nodes in a network of 10 nodes, one setting its minimum
contention window as W' and the other as W2 Fig. 15
plots the average detection delays to identify the misbe-
having node 1, denoted as E[TD]I, under different
misbehaving intensity pairs (W', W?). Note that even in
this simple case the two malicious nodes are competing
with each other. There is a tradeoff between the two
nodes. Certainly it takes longer to detect one malicious
node if the other chooses more intense misbehavior. It will
be an interesting problem to determine how the multiple

Q= (26)

malicious nodes can find certain misbehaving strategies to
collaboratively maximize their collective benefit from the
network throughput while avoiding being detected as
long as possible. In our future work, we will carry out
more in-depth studies of the scenario with multiple
misbehaving nodes.

8.2 Misbehaviors beyond CW Manipulation

Beyond just manipulating CW,,,;,, values, there can be more
sorts of strategic misbehavior. As nowadays virtualization
technologies are common, a malicious node can create
multiple virtual adapters associated with one physical
adapter. Combining this with the backoff misbehavior, the
malicious node can initiate sybil attacks to gain more
benefits from the network and still remain undetected.
Further, the malicious node can even spoof the MAC
addresses of well-behaved nodes and then start misbehav-
ing. This may lead to false accusation of well-behaved
nodes if the FS detector is directly applied. To address these
issues, based on the fact that every node needs to contact
the AP initially to join the network, one approach is to let
the AP impose authentication to every node joining the
network to ensure that each MAC address is associated
with exactly one physical node. After the authentication, the
FS detector can then take actions to monitor the node. We
will conduct more in-depth studies in our future work.

9 CONCLUSION

In this paper, we propose a novel fair share detector for
real-time backoff misbehavior detection in IEEE 802.11-
based wireless networks. Also, we develop a Markov chain-
based model to theoretically analyze the detection perfor-
mance of the scheme. While most existing work for backoff
misbehavior detection depends on heuristic parameter
configuration and experimental performance evaluation,
we are able to use our model for a quantitative study to
achieve guaranteed detection performance in terms of
average false positive rate, average detection delay, and
missed detection ratio. Moreover, we present simulation
results that confirm the accuracy of our theocratical analysis
and demonstrate the robustness of the FS detector. For our
future work, we plan to systematically study the generic
scenario with multiple misbehaving nodes in a multihop
wireless network.
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