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Abstract—In cyber-physical system (CPS) over IEEE 802.11e
based wireless local area networks (WLANs), a misbehaving
node can gain significant advantage over other normal nodes
in terms of resource sharing by deliberately manipulating its
protocol parameters. Due to the random spectrum-access nature
of the protocol, it is challenging to detect the misbehaving node
accurately and in real-time. Moreover, many existing misbehav-
ior detectors, primarily designed for traditional IEEE 802.11
networks, become inapplicable in IEEE 802.11e networks with
heterogeneous network configurations. In this paper, we propose
novel real-time and light-weight countermeasures including a
hybrid-share misbehavior detector and a packet-dropping based
misbehavior mitigation mechanism for IEEE 802.11e based CPS.
We develop mathematical models for the performance of the pro-
posed detector and mitigation mechanisms. Extensive simulation
results show that the proposed mechanisms can achieve a high
detection rate and punish a misbehaving node with a high packet
dropping rate.

Index Terms—Cyber physical system; IEEE 802.11e; misbe-
havior detection; mitigation; false positive rate; detection rate

I. INTRODUCTION

Cyber physical systems (CPSs) are systems where cyber
and physical subsystems interact intimately to provide ubiq-
uitous data retrieving from and convenient control of physical
environments. Integrated with the rapidly developing wireless
and networking technologies, CPS are envisioned to facilitate
intimate interactions between human and the physical world
in a large variety of applications such as environment moni-
toring, building automation, transportation systems, industrial
automation and smart grid [1]–[4].

The IEEE 802.11 based wireless local area networks
(WLANs) are one of the most commonly used type of
wireless networks for short-range communications. WLANs
are suitable for monitoring/surveillance applications in various
forms of CPS such as multi-media sensor networks, body
area networks and cyber-physical vehicular ad hoc networks
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(VANETs) [5]–[7]. They also find rapidly growing applications
in industrial control systems [8], [9], where the central control
unit can act as the access point (AP) for receiving and process-
ing sensor data. Advances in 802.11g and 802.11ah standard
can support machine-to-machine (M2M) communications with
little human intervention and provide efficient access scheme
for wireless devices [10].

In CPS, the exchanged data are often of different types
and may have different priorities. For example, in wireless
networked control systems, there are sensor measurements,
control decision packets and network management (e.g., time
synchronization) messages that need to be exchanged among
the control unit(s), actuators, sensors and other devices. In
VANETs, there are traffic information (e.g., packets conveying
road congestion and emergence accident information) and
commercial advertisement packets that are transmitted in an
ad hoc manner. For timely reacting to the accident, emergence
packets should be given high priorities over other ones. The
diverse priorities require service differentiation, which how-
ever is not supported by traditional IEEE 802.11 protocol. This
problem is solved by the IEEE 802.11e standard which adopts
the Enhanced Distributed Channel Access (EDCA) mechanism
to provide media access control (MAC) level differentiation in
quality of service (QoS) [11]. With EDCA, network traffic
is prioritized and classified into several access categories
(ACs). Service differentiation is realized by assigning different
parameters for each AC, including the minimum and max-
imum contention window sizes (i.e., CWmin and CWmax,
respectively), the arbitration inter-frame space (AIFS) number
and transmission opportunity (TXOP) limit [11]. By default,
four ACs are specified in the standard, namely background
(ACBK), best effort (ACBE), video (ACVI) and voice (ACVO),
in ascending priority order. IEEE 802.11e has been applied in
industrial control and remote healthcare CPSs [12], [13]. In
industrial control applications, it has been detailed in [14]
that the following four types of data communications can
be classified into the four default ACs in practice: urgent
asynchronous notifications (ACVO), process data sent on a
predictable schedule (ACVI), process data sent on a sporadic
schedule (ACBE), and parameterization services (ACBK).

Recently, the security aspect of CPS has gained significant
attention. As both communication and control decisions are
carried out in the cyber space, CPS is substantially vulnerable
to cyber-attacks [15]. As one of the most important security
issues, misbehavior detection and prevention have been inves-
tigated in various CPS applications [16]–[19]. In IEEE 802.11e
based CPS, to provide desired QoS, it is important to guarantee
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fairness of sharing the spectrum resource among the nodes in
one access category. However, since the wireless media are
inherently open-access, a selfish node can easily gain advan-
tage over other normal nodes by deliberately manipulating its
MAC parameters. For example, by using a shorter contention
window, a node will spend less time in backoff state and can
more frequently access the medium. Also, it can use a smaller
arbitration inter-frame space (AIFS) to wait for shorter time
than others in the same AC before accessing the medium.
Thus, its throughput can be higher than expected. Moreover,
the misbehaving node will also impose more interference to
other ones and hence apply denial of service attacks to them
to reduce their throughput. The impact of such misbehavior
can be significant in CPS. For example, in networked control
systems, if a misbehaving sensor sends abundant packets to
the control unit, which in turn may reduce the successful
transmission rates of the control decisions, the system may
frequently become uncontrolled due to losses of those control
decision packets.

For IEEE 802.11e protocol, due to the random access
nature of the carrier sense and multiple access with collision
avoidance (CSMA/CA) based MAC protocol, it is challenging
to detect and mitigate the impact of such misbehavior. Usually,
we need to monitor every node for a sufficiently long period
of time to judge whether it is misbehaving or not. Since it is
difficult to extract necessary information from collided trans-
missions, information conveyed in successful transmissions
is one of the few sources of available information that can
be utilized for detection. There have been detectors proposed
in [20], [21] for misbehavior detection in 802.11 networks
by exploiting the fair share property among nodes. However,
with multiple ACs in an IEEE 802.11e WLAN, the network-
wide fairness as achieved in traditional IEEE 802.11 based
networks is broken [22], making the above detectors generally
inapplicable. Moreover, existing 802.11e misbehavior detec-
tors [23]–[25] suffer from long detection delay or the difficulty
in correctly measuring desired values. Thus, efficient and real-
time misbehavior mitigation mechanisms for CPS with QoS
differentiation based on IEEE 802.11e are still open issues.

In this paper, we analyze the misbehavior strategy and its
impact in IEEE 802.11e networks and propose both a novel
real-time light-weight detector and mitigation mechanism to
deal with misbehavior in IEEE 802.11e based CPS. The major
contributions in this paper can be summarized as follows.

• We propose a mathematical model of the percentage
of resource sharing for a node in each priority class.
Based on this, we design a novel hybrid-share detector in
which the detector keeps updating its state based on every
successful transmission and makes detection decisions by
comparing its state with a threshold. We also develop
analytical results of the detector performance in terms of
false positive rate and average detection rate.

• Further, we propose a light-weight misbehavior mitiga-
tion mechanism in which the AP randomly drops the
packets of a node if the node is identified as misbehaving.
The performance of the mechanism is also analyzed and
the long-term average packet dropping rate is derived
analytically.

• Finally, we present extensive simulation results to demon-
strate the performance of the proposed detector and
mitigation mechanism in terms of various performance
metrics including detection rate, false positive rate, de-
tection delay and packet dropping rate.

Some primary results have been published in [26]. In this
paper, we have incorporated significant new contributions.
Firstly, the work in [26] only focused on misbehavior detec-
tion, while this work further proposes a mitigation mechanism
that allows the AP punish misbehaving nodes by randomly
dropping its packets. As will be discussed, rational misbe-
having nodes will finally be driven to well-behaving when
such punishment is applied. Secondly, we develop analytical
models for average packet dropping rate of the mitigation
mechanism. Thirdly, we conduct extensive simulations based
on the OMNeT++ network simulator and show that our
analytical models have a good accuracy.

The remainder of this paper is organized as follows. More
related work is reviewed in Section II. Section III overviews
the problem. Following the mathematical MAC model in Sec-
tion IV, the detector and mitigation mechanism are designed
and analyzed in Section V and VI, respectively. Simulation
results are presented in Section VII, while more discussion
about the proposed mechanisms is provided in Section VIII.
Concluding remarks are presented in Section IX.

II. RELATED WORK

Enhanced from the IEEE 802.11 protocol, the IEEE 802.11e
protocol is a promising technology for many industrial appli-
cations [14]. There have been a number of recent studies on
the performance of IEEE 802.11e based WLANs for industrial
CPS when real-time communications are considered [9], [12].
However, the misbehavior impact and countermeasures in such
systems have not been well studied in the literature.

Information conveyed in successful transmissions can be
utilized for misbehavior detection in 802.11 based networks.
Toledo et al. proposed to detect backoff misbehavior by
checking whether the idle time between consecutive successful
transmissions from a target node obeys the normal distribution
[20]. Exploiting the fairness property across the network, a
light-weight fair-share detector is design in [21], which does
not rely on the idle time distribution. Instead, it counts the
number of successful transmissions (or throughput) of each
node and identifies a node if its throughput is much higher
than others. However these detectors are not inapplicable in an
IEEE 802.11e WLAN, since the network-wide fairness cannot
be achieved in the service differentiation scenarios.

To detect backoff misbehavior in IEEE 802.11e networks,
Szott et al. proposed a χ2 detector by comparing the measured
and expected backoff values [23]. However, the exact values
of backoff periods followed by unsuccessful transmissions
may be hard to measure. The detector in [24], however, takes
advantage of the fact that the interval between two consec-
utive successful transmissions is uniformly distributed in [0,
CWmin) providing that the packet in the second transmission
was not retransmitted before. Nevertheless, the detector delay
could be very high. In addition, the information whether a
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packet is retransmitted or not is difficult to obtain or can be
manipulated by the misbehavior to cheat the detector. While
there are works well addressed the TXOP misbehavior [25],
efficient and real-time detection of contention window and
AIFS misbehavior still remains open.

III. PROBLEM OVERVIEW

To support QoS differentiation in CPS, the IEEE 802.11e
protocol defines a heterogeneous network operating environ-
ment as detailed as follows.

A. IEEE 802.11e Protocol

In traditional IEEE 802.11 networks, the channel access
among nodes is coordinated by the distributed coordination
function (DCF) based on the CSMA/CA mechanism. Before
transmission, each node should first sense the channel idle
for an inter-frame space time (DIFS) and then wait until a
backoff timer counts down to 0 before starting transmission.
Each node takes the binary exponential backoff strategy to
access the channel with the backoff timer at each backoff stage
initialized at a value randomly chosen from [0, CW−1]. Here,
the contention window size CW is initialized at CWmin and
is doubled (until CWmax) once a transmission is unsuccessful
(thus the backoff stage increases by 1). A packet will be
retransmitted at most for a certain number of times. The
backoff timer counts down by 1 if the channel is sensed idle
for a backoff slot. Otherwise if the channel is sensed busy, the
timer will be suspended until the channel becomes idle for
DIFS time again. Since all nodes use the same parameters,
the channel contention is fair for them.

However, the EDCA specification in IEEE 802.11e supports
hybrid backoff parameters and AIFS. With EDCA, a node with
a small contention window size can gain a high opportunity to
win the channel access contention game among other nodes,
thus achieving a high throughput. However, a node with a
large AIFS should wait a longer time before starting channel
access contention, thus giving way to high-priority nodes. By
default, there are four priority classes (or access categories)
defined in IEEE 802.11e EDCA [11], as shown in Table I.

TABLE I
EDCA DEFAULT SETTINGS.

Access category CWmin CWmax AIFSN
Background ACBK aCWmin aCWmax 7
Best Effort ACBE aCWmin aCWmax 3

Video ACVI (aCWmin+1)/2-1 aCWmin 2
Voice ACVO (aCWmin+1)/4-1 (aCWmin+1)/2-1 2

In this paper, we consider the general cases that there are c
priority classes, each of which is assigned with contention win-
dow size parameters CWmini and CWmaxi, and inter-frame
space AIFSi=AIFSNi*aSlotTime+aSIFSTime, where AIFSN
is the number of slots, after a short inter-frame space duration,
a node should defer before either invoking a backoff or starting
a transmission. The parameters are assigned by the AP.

Normally, after a packet transmission, each node should
conduct a new channel contention process in order to transmit
the next packet. However, the IEEE 802.11e offers the TXOP

option to allow a node retaining the channel access and
continuing transmitting packets after a successful transmission.
The duration of such TXOP time is controlled by the TXOP
Limit parameter.

B. Misbehavior Model and Analysis

A misbehaving node may use MAC parameters different
from those assigned by the AP, to gain a higher share of
the resource. As discussed above, in order to improve its
throughput, a misbehaving node can manipulate its CWmin,
CWmax and AIFSN to be smaller (or the TXOP Limit to be
larger) than the corresponding values assigned by the AP. It
can also completely disobey the rules, e.g., by using a fixed
backoff window size other than the binary exponential backoff
strategy. In the following, we assume that TXOPLimit= 0 and
that TXOP misbehavior does not present. We defer the discuss
about relaxing these assumptions and the detection of TXOP
misbehavior to Section VIII-A.

To demonstrate the impact of the misbehavior, consider an
example network of 10 normal nodes and one misbehaving
node. Each node is saturated, that is, it always has packets to
transmit. Each normal node uses the following MAC param-
eters: CWmin = 15,CWmax = 1023 and AIFSN = 2; while
the misbehaving node takes CWmin = 1 ∼ 32,CWmax =
1023 and AIFSN = 0 ∼ 2. Fig. 1 illustrates the impact of
the misbehaving node in terms of the percentages of resource
sharing (defined as the ratio of the throughput contribution
from a particular node over the total network throughput). As
shown in this figure, the misbehaving node can gain significant
advantage over the other nodes by manipulating its MAC
parameters. Moreover, the impacts of CWmin and AIFSN
are different. For example, in order to achieve a 10% higher
throughput, the misbehaving node needs to reduce its CWmin
to a much smaller value (e.g., from 15 to less than 7); while,
this can also be achieved by simply reducing its AIFSN from
2 to 1. In other words, the misbehaving impact on the network
is more sensitive to AIFSN than CWmin.
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Fig. 1. Impact of MAC misbehavior.

Because the backoff size is chosen randomly, it is difficult
to tell a contention window- or AIFS- misbehaving node
from other normal nodes based on analyzing a single or very
few transmissions. For instance, a misbehaving node with
CWmin=7 may generate the same backoff window size as
another normal one with CWmin=15. Also, since the AIFS
duration often comes before or after the backoff, an AIFS
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misbehaving node is able to pretend to be a normal one
that chooses small backoff sizes. In particular, a node can
dynamically switch between misbehaving and being normal.
Therefore, to detect such misbehavior, it requires to monitor
the packet transmissions of each node for a long time.

In this paper, we focus on both CWmin and AIFSN ma-
nipulating misbehavior. While the proposed detector is also
effective for CWmax misbehavior, a misbehaving node may
prefer to manipulate CWmin over CWmax since the former
strategy has greater impact. Also, we focus on saturated traffic
cases; otherwise, for a light-loaded network with unsaturated
traffic, since the medium is less likely to be crowded, a
misbehaving node may not have much impact on the other
normal nodes. Our goal is to detect such misbehavior at the
AP and counteract with it in real-time.

C. Fair-Share Detector and Challenges

Consider an IEEE 802.11e based CPS with one AP and n
nodes located within each other’s communication range. The
nodes compete for sending packets to the AP. In traditional
IEEE 802.11 standard, the DCF mechanism guarantees that on
average each node will share the same portion of the medium
resource and maintains fairness across the network. For an
arbitrary node v, let a binary variable Iv be the indicator of
whether a packet received by the AP is from node v or not.
In normal cases, due to the network-wide fairness guarantee,
we have probability P[Iv = 1] = 1

n .
A misbehaving node can gain unfair share of the resource

by manipulating its backoff parameters, e.g., using a smaller
CWmin. If the AP records all the received packets, it can
notice that more packets are from the selfish one, i.e., P[Iv =
1] > 1

n . The work in [21] takes advantage of this feature and
designs a nonparametric cumulative sum (CUSUM) based fair-
share misbehavior detector (called FS detector) to detect such
misbehavior in real-time, which is described as follows.

For a target node v, let Xk be the state of the detector for v.
Xk initializes at 0, i.e., X0 = 0. For the kth packet received
by the AP, the state of the detector is updated as follows.

Xk+1 = [Xk + (nIk − 1)]
+
, (1)

where x+ is x if x > 0 and is 0 if otherwise. If the packet is
from v, we have Ik = 1 and Xk+1 = Xk + n− 1; otherwise,
Ik = 0 and Xk+1 = Xk − 1. The idea behind is that, due to
fair sharing, the nodes roughly take turns to transmit packets.
Therefore, the detector state Xk is likely to be bounded. In
presence of misbehaving nodes, since P[Iv = 1] > 1

n , the
unfair portion of channel sharing will accumulate such that
the state of the FS detector associated with each misbehaving
node finally becomes unbounded. Thus, a detection threshold h
is employed to decide whether v is misbehaving (i.e., δk = 1)
or not (i.e., δk = 0) as follows.

δk =

{
1, if Xk ≥ h,
0, otherwise. (2)

Because every received packet is counted by the AP in
making detection decisions, the FS detector can identify the
misbehaving node much faster than many existing detectors.

Moreover, the FS detector is nonparametric and lightweight in
terms of computation complexity, thereby it is able to provide
real-time misbehavior detection services [21].

Since the underlying assumption of network-wide fairness
is broken in the EDCA situation, the FS detector cannot
be directly applied in networks with hybrid priority classes.
However, since sub-network fairness still can be achieved
among the nodes in the same class, a natural extension is to
design a distinct FS detector for each class. Specifically, for a
node in class i, the associated detector should use the number
of nodes in this class other than a common n of the whole
network, as in (1). Nevertheless, such an extended FS detector
encounters some challenges. For example,

• If there is only one node in a class, its misbehavior may
not be detected. To see this, substituting n = 1 into (1)
we can obtain that Xk+1 = [Xk − (1 − Ik)]

+ ≡ 0 if
X0 = 0. As a result, δk ≡ 0.

• If all the nodes in one class misbehave, some or all of
them may not be detected. Specifically, if they use the
same manipulated MAC parameters, the detector sees
that none of them is misbehaving; otherwise, at least
the one with the lowest throughput among them will be
considered as a normal node.

Therefore, to overcome the shortcomings of the FS detector,
only considering a single priority class is not enough. In the
following, we propose a novel hybrid-share detector based on
the following analytical MAC model.

IV. MAC ANALYTICAL MODEL

For an arbitrary node v in class i, denote si as its percentage
of resource sharing. In this section, we propose an analytical
model for calculating si. We assume that there are c prior-
ity classes; each class (say class i) contains ni nodes that
compete for channel access using parameters Wi = CWmini,
CWmaxi = 2mi(Wi + 1) − 1 and AIFSi, where 1 ≤ i ≤ c
and mi = log2

CWmaxi+1
CWmini+1 is the maximum backoff stage. For

simplicity, we assume that the maximum retransmission limit
for node v is the same as mi

1. Thus, the contention window
size of this node in its jth backoff stage is

Wi,j = 2j(Wi + 1)− 1. (3)

Assume that all nodes including the AP can hear each
other’s transmissions. No capture effect is assumed, thus
a transmission is successful only if no other transmissions
happen simultaneously. Let pi and τi be the frame blocking
probability (i.e., the probability that node v senses a busy
channel (and thereby suspends its backoff timer countdown)
in a generic time slot) and transmitting probability (i.e., the
probability that v transmits in a generic slot), respectively. The

1This assumption can be relaxed to obtain a more complicated version
of the MAC model; however, the modeling methodology is similar and the
hybrid-share detector proposed in this paper will be still valid.
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transmitting probability has been given in [27] as follows:

τi =
1− pmi+1

i

(1− pi)
∑mi

j=0 p
j
i

[
1 + 1

1−pi

∑Wi,j

k=1
Wi,j−k
Wi,j

]
=

1− pmi+1
i∑mi

j=0 p
j
i

(
1− pi +

Wi

2

)
=

2(1− pi)(1− 2pi)

(1− 2pi)2 + (Wi + 1)(1− pi)
1−(2pi)mi+1

1−p
mi+1

i

. (4)

Let ∆Ai = AIFSNi − AIFSNmin, where AIFSNmin =
min{AIFSNj |j = 1, . . . , c}. Due to the differentiation in
AIFS, a node of low priority must wait for a longer idle time
than a high-priority node after a busy channel period before
resuming its backoff timer countdown. That is, for node v, it
has to sense ∆Ai+1 idle slots before resuming backoff timer
countdown [28]. Therefore, the frame blocking probability of
node v is equivalent to the probability that none of ∆Ai + 1
slots is occupied by transmissions from other nodes, i.e.,

pi = 1−
(
1− pb
1− τi

)∆Ai+1

, (5)

where pb is the probability that the channel is busy in a random
slot, which can be easily measured by the AP. By definition,
pb can be given as follows.

pb = 1−
c∏

k=1

(1− τk)
nk . (6)

With the equations (4)-(6), the AP can solve the probabil-
ities τi and pi numerically. In the special case that mi = 0,
the AP simply gets τi =

2
Wi+1 and pi = 1− W1+1

Wi−1 (1− pb).
In a generic slot, the probability that node v successfully

transmits a packet to the AP is

ps,i = τi(1− τi)
ni−1

c∏
k=1,k ̸=i

(1− τk)
nk

=
τi

1− τi
(1− pb). (7)

Therefore, the percentage of resource sharing of node v (which
is also the probability that a successful transmission to the AP
is from v) is given by

si =
ps,i
ps

=
ps,i∑c

k=1 nkps,k
=

τi
1−τi∑c

k=1
nkτk
1−τk

, (8)

where ps =
∑c

k=1 nkps,k is the probability of a successful
transmission (from any node).

We can further obtain the total throughput η, i.e., the average
number of packets (from any node) received by the AP in one
slot, and the throughput of the target node v as

η =
Probability of a successful transmission

Average length of a slot time

=
ps

1− pb + psTs + (pb − ps)Tc
, (9)

ηi = siη, (10)

respectively, where pb − ps is the probability of a collided
transmission. 1 − pb is the channel idle probability, i.e., the

probability that none of the nodes transmits. Ts and Tc are
the numbers of empty slots2 of a successful transmission and
a collision, respectively. In the case of basic access (without
RTS/CTS handshaking), we have [28], [29]:

Ts = AIFSNmin + L+ 2LSIFS + LACK + 2δ, (11)
Tc = AIFSNmin + L+ LSIFS + LACK + δ, (12)

where L is the length of a packet including the MAC and
PHY headers3. In the above, LSIFS and LACK are durations
of a short inter-frame space and an ACK transmission period,
respectively. δ represents the propagation delay. The units of
both Ts and Tc are numbers of empty slots. Then, the average
number of empty slots between two successive transmissions
can be given by

T =
1

η
. (13)

Note that, if each misbehaving node is treated as a distinct
priority class, the above analysis is able to accommodate both
normal and misbehaving nodes.

V. HYRID-SHARE DETECTOR DESIGN

A. HS Detector Design

The AP runs a distinct detector algorithm for each node.
Specifically, for a target node belonging to priority class i,
the hybrid-share (or HS for short) detector is designed as
follows. Based on the above analytical model, the numerical
solution of si may introduce some error, say ϵi. Let s̄i be the
approximated solution of si, i.e.,

si = s̄i + ϵi, (14)

where ϵi accounts for the approximation error. The purpose of
using s̄i instead of si will be discussed in Remark 1.

In the following, we shall omit the subscript i. The detector
maintains a state Xk with initial state X0 = 0. Once a packet
arrives at the AP, the detector state is updated according to

Xk+1 = min
{
[Xk + (Ik − s̄)]

+
, m̄σ

}
, (15)

where Ik is defined below Eq. (1) and P[Ik = 1] = s. m̄
and σ will be defined later in Section V-B1. Once Xk hits its
maximal value (i.e., m̄σ), it is reset to 0 immediately, which
results in that Xk+1 = (Ik − s̄)+. With such resettings, the
detector is frequently refreshed to be prepared for detecting
real-time misbehavior.

In normal cases, Xk is expected to remain in [0, 1]. We
introduce a new detection threshold h and make the detection
decision by computing

δk =

{
1, if Xk ≥ h,
0, otherwise. (16)

Similar as above, δk = 1 indicates that the target node is
misbehaving, while δk = 0 indicates normal behaving.

Note that, in normal cases, Xk may be able to hit 1 if the
AP receives a number of successive packets from the target

2An empty slot is specified by parameter aSlotTime in the standard [11].
3We assume all the packets are of the same length. The case with diverse

packet lengths is discussed in [29].
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node. Therefore, for the sake of correct detection, h can be
set to larger than 1. More discussion about selecting h will be
provided later in Section VII.

We call Xk the state of the HS detector in step k. Note that
the step size may vary from time to time because the packet
arrivals at the AP are generally random. However, from (13)
we can obtain the average step size as T .

When applying the proposed detector, the AP only needs
to compute the MAC model and calculate the percentage of
resource sharing once, as long as the network configuration
and MAC parameters assigned to each node do not change.
As shown in (15), the computation complexity of the proposed
detector itself is very low. Therefore, it is worth noting that
the proposed detector is light-weight. Moreover, since all
received packets are utilized by the detector, misbehavior can
be detected in a real-time manner.

B. Performance Analysis

Definition 1: To evaluate the performance of the HS detec-
tor, we define the following metrics.

• The false positive rate pf is the conditional probability
that the target node is indicated misbehaving when in
effect none of the nodes is misbehaving.

• The detection rate pd(D) of the HS detector is the
probability that a misbehaving node will be detected
within D time slots (slots are defined in IEEE 802.11e).

pf can be viewed as the rate of false alarms, while pd(D)
reflects the effectiveness and real-time performance of the
HS detector. Below we analyze the detector performance by
mathematically modeling pf and pd(D).

1) False positive rate: For any s̄ > 0, there exists σ >
0 such that both s̄

σ and 1−s̄
σ are integers (say L0 and L1,

respectively). For example, we can use the precision of s̄ to
determine the above two integers. For any step k between
two adjacent detector state resettings, suppose there are k1
times that Iκ = 1 and k0 times that Iκ = 0, where κ is
between the last resetting step and k. Thus, based on (15),
Xk ∈ {0, Xk−1−s̄, Xk−1+1−s̄}. Furthermore, Xk ≤ k1(1−
s̄) = k1L1σ, which yields that

Xk ∈ {0, σ, 2σ, . . . , k1L1σ}. (17)

Since Xk is a set of multiples of σ, its largest possible value
is m̄σ where m̄ = ⌈h

σ ⌉ (otherwise Xk is reset). Therefore, the
support of Xk can be denoted as

M =
{
0,m1σ,m2σ, . . . , m̄σ

∣∣∣mj ∈ N+,mj < mj+1 < m̄
}

⊆ {0, σ, 2σ, . . . , m̄σ}. (18)

Clearly, M is a finite set.
According to (15), Xk+1 depends only on Xk, thus the

sequence {Xk} forms a homogeneous Markov chain. Since
the support of Xk may vary from step to step, to calculate the
probabilities of the chain’s states at any step k, we can consider
the bigger set {0, σ, 2σ, . . . , m̄σ} without loss of generality.
Define the following vector:

xk = (P[Xk = 0], P[Xk = σ], . . . , P[Xk = m̄σ]) , (19)

Obviously, xk1 = 1, where 1 is the (m̄+1)×1 vector with all
elements equal to 1. Initially, we let xk = [1, 0, . . . , 0] which
corresponds to X0 = 0. Due to the homogeneity of the chain,
we can have xk+1 = xkP, where P is the step-independent
probability transition matrix. P depends only on s and thus
can be represented as P(s). Let Pi,j be the (i + 1, j + 1)th
entry of P, which is the probability of the transition from xi,k

to xj,k+1, ∀k ≥ 0. To calculate P, consider the following
scenarios of state transitions from Xk = i to Xk+1 = j:

• If i = 0, according to (15), j can only be either 1− s̄ (if
Ik = 1) or 0 (if Ik = 0). Therefore,

P0,L1 = s and P0,0 = 1− s. (20)

• If i ∈ (0, L0], j will become 0 when Ik = 0. Therefore,

Pi,0 = 1− s and Pi,min{m̄,i+L1} = s. (21)

• If i ∈ (L0, m̄), (15) reduces to Xk+1 = max{Xk+(Ik−
s̄), m̄σ}. Therefore,

Pi,i−L0 = 1− s and Pi,min{m̄,i+L1} = s. (22)

• Otherwise, i = m̄. Since Xk is reset to 0 immediately
when it reaches m̄, this scenario is similar to the first one
(i.e., when i = 0). Thus,

Pm̄,L1 = s and Pm̄,0 = 1− s. (23)

Then, with the initial value x0, all xk can be calculated
by iterating xk+1 = xkP. Let us consider the steady-
state distribution of the chain {Xk}: π = limk→∞ xk =
[π0, π1, . . . , πm̄]. With P given as above, we can get a unique
π by solving π = πP. Then, based on Definition 1, the false
positive rate is given by

pf = πm̄. (24)

Remark 1: In the above, the value of σ directly determines
the dimensions of P and π. For the approximated value s̄ with
less precision, we can get a relatively larger σ and hence lower
computation complexity in obtaining π. Simulation results in
Section VII show that a precision of 0.1 can already achieve
a satisfactory false positive rate.

2) Average Detection Rate: Suppose the target node starts
to misbehave at step 0 and that the associated Markov chain
{Xk} in the normal case before step 0 has reached its steady
distribution π. Note that, with the target node misbehaving,
the parameters (e.g., CWmin and AIFSN) of the MAC model
change. Hence, we add superscript ∗ to the variables defined
in previous sections to distinguish the case with the target
node misbehaving from the normal case. Since whether a node
misbehaves or not is not pre-known to the detector, it shall
assume that the target node is normal and still use s̄ to update
its state. Thus, the support of Xk (and also σ, L0, L1 and
m̄) remains the same as before. The only difference lies in
the probability of Ik = 1 (i.e., P[Ik = 1] = s∗), which in
turn changes the probability transition matrix from P(s) to
P∗ = P(s∗). Let π∗ be the stationary probability associated
with P∗, i.e., π∗ = π∗P∗. The following theorem derives the
detection rate for which the proof is presented in Appendix.
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Theorem 1: The average detection rate is:

pd(D) = ⌊ D
T ∗ ⌋π

∗
m̄, (25)

where ⌊ D
T∗ ⌋ is the average number of steps in time D (referring

to (13)). π∗
m̄ is the last element of π∗.

VI. DESIGN OF A MITIGATION MECHANISM

Once a node is detected as misbehaving, the AP can
punish the node by dropping its subsequent packets. Since
our detector may yield false positive rate, it is possible that
a normal node is mistakenly found as a misbehaving one. To
prevent the packets of a normal node from being blocked by
the AP, once a node is deemed as misbehaving, its subsequent
packets are not completely dropped. Instead, the node will be
blacklisted and its subsequent packets will be dropped with
probability determined as follows:

ρk(Yk) = min{1, (Yk)
+}, (26)

where Yk is another state associated with the target node and
is induced by the detector state Xk. Yk is initialized at 0 and
evolves as follows.

Yk = max{min{Yk−1 − α1Xk<h + β1Xk≥h, Ysup}, Yinf},
(27)

In the above, α, β, Ysup and Yinf are real numbers. Particularly,
Yinf ≤ 0 < α < β < 1 ≤ Ysup. 1condition equals
to 1 if “condition” is true and is 0 if otherwise. Without
loss of generality, assume that there exists σ̃ > 0 such
that α = nασ̃, β = nβσ̃, 1 = n1σ̃, Ysup = nsupσ̃ and
Yinf = ninf σ̃, where nα, nβ , n1, nsup and ninf are integers.
Thus, Yk ∈ Y , {ninf σ̃, (ninf+1)σ̃, . . . , 0, σ̃, 2σ̃, . . . , nsupσ̃}.

The basic idea of the above misbehavior mitigation mech-
anism is to gradually increase the dropping rate of a mis-
behaving node and reduce that of a normal node. Specially,
as seen from (27), the state Yk will increase by β once the
detector state Xk hits h. Thus, Yk will grow towards Ysup and
the packet dropping probability will grow to 1 if the detector
state of the corresponding node frequently hits the upper bound
h. Otherwise, if the state Xk remains within [0, h), Yk will
gradually decrease, and once it reduces to or below 0, the
packet dropping rate will become 0; in this case, the target
node will be deemed as a normal one and will be removed
from the blacklist of the AP.

A. Performance Analysis

In the following, we analyze the performance of the pro-
posed countermeasure on the target node. Similar to xk, define

yk = (P[Yk = ninf σ̃], . . . ,P[Yk = nsupσ̃]) . (28)

By (27), we know that {Yk} forms a Markov chain. Let the
probability transition matrix be T k, i.e., yk+1 = ykT k. We let
Ti,j,k denote the (i, j)-th entry of T k, which is the transition
probability from Yk−1 = (i−1+ninf)σ̃ to Yk = (j−1+ninf)σ̃.

Apparently, T k depends on xk, i.e., the probability vector for
Xk. We have

Ti,j,k =

 1− xm̄,k, if j = max{1, i− nα},
xm̄,k, if j = min{nsup − ninf + 1, i+ nβ},
0, otherwise,

(29)

where xm̄,k is the last element of xk which is calculated in
Section V-B1. In the above equation, the first and second lines
account for the cases that Xk < h and Xk ≥ h, respectively.
yk is initially [1, 0, . . . , 0]. In a long-run, since the steady state
of xk will be π, we have limk→∞ T k = T , where T can be
obtained by replacing xm̄,k with πm̄ in (29). Furthermore, yk

will evolve to its steady state y such that y = yT . With
T obtained as above, y can be calculated and the long-term
average packet dropping rate for the target node is

ρ̄ =

nsup−ninf+1∑
i=1

yiρ ((i− 1 + ninf)σ̃)

=

n1+1−ninf∑
i=2−ninf

(i− 1 + ninf)σ̃yi +

nsup−ninf+1∑
i=n1+2−ninf

yi, (30)

where the second equality holds because of (26). Note that,
for both a misbehaving node and a normal node, the long-term
average packet dropping rate is calculated in the same way as
above.

Taking packet dropping into account, the throughput that
the target node achieves becomes

η̄i = ηi(1− ρ̄), (31)

where ηi is the throughput without the above countermeasure
which is given in (10).

Remark 2: If the target node keeps misbehaving, the
throughput is given as η̄∗i . Otherwise, if it turns to well-behave,
the throughput is η̄i. Therefore, the parameters of the proposed
mechanism in (27) should be chosen such that

η̄∗i < η̄i, (32)

which means that the target node will obtain no benefit by mis-
behaving; rather, its performance in terms of throughput will
get even worse due to misbehaving. In this sense, a rational
misbehaving node will decide not to always misbehave. Since
the set of misbehaving strategies is finite, the above inequality
should be ensured under the most light-weight misbehaving
strategy.

Remark 3: We suppose that the AP will warn the target
node with a short message about the packet dropping proba-
bility ρk, if ρk > 0. Thus, with probability

P[ρk > 0] = 1−
1−ninf∑
i=1

yi,k, (33)

a misbehaving node will be informed that its packets will be
dropped randomly. For a rational node, it will hence degrade
its misbehaving intensity by increasing CWmin or the AIFSN.
Thus, the proposed mechanism is potentially able to finally
drive the misbehaving node to well-behaving.
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Otherwise, an irrational malicious node may keep misbe-
having and ignore the warning packets from the AP. In this
case, the detector state Xk will frequently hit h since it sends
more packets than expected. Thus, its associated state Yk will
gradually increase to Ysup, resulting in that the packet drop
rate ρ = 1 (notice that Ysup ≥ 1). In other words, irrational
misbehaving nodes will finally get blocked by the AP if it
does not respond to the AP’s warning.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the HS
detector and the proposed countermeasure through extensive
computer simulations based on the OMNeT++ network simu-
lator. As shown in Fig. 2, we consider a CPS with 15 wireless
sensors (e.g., WiFi cameras, flowmeters and thermometers)
and one AP. The sensors transmit data to the AP using the
IEEE 802.11e protocol. The AP then transmits the sensors
data to a programmable logic controller (PLC) for control
purposes. The sensors are categorized into three classes. In
class 1, there are n1 = 6 nodes using MAC parameters
W1 = 31, CWmax1 = 1023 and AIFSN1 = 3. For the other
two classes, we set n2 = 6, W2 = 15, AIFSN2 = 3, n3 = 3,
W3 = 15, and AIFSN3 = 2. The data of class 3 sensors has
the highest priority, so they can contain urgent information
such as emergence notifications. The sensors in the other
two classes can include normal process measurements data
in their packets. CWmax is fixed at 1023 for all nodes. Other
parameters used in the simulations are listed in Table. II. Each
simulation runs for 60 seconds. There is one node (the target
node) in class 2 which misbehaves. If the target node conducts
misbehavior aggressively (e.g., using a very small CWmin),
the data from other sensors may experience severe packet
collisions or delay, which may further results in bad control
performance of the whole CPS due to lack of data from other
sensors. Therefore, for the health of the CPS, it is important
to detect and mitigate the impact of the misbehaving node.

Ethernet

PLCAP

IEEE 802.11e 

WLAN

sensors

Fig. 2. Illustration of the simulating CPS. All the sensors report data to the
AP based on the IEEE 802.11e protocol.

A. Performance of the detector

1) False positive rate: To evaluate the false positive rate
pf of the HS detector, we consider the case that the target

TABLE II
SIMULATION PARAMETERS

Parameter value
deployment area 80m×80m square area

channel frequency band 2.4 GHz
bit rate 11 Mbps (IEEE 802.11b)

packet length 100 byte (same for all nodes)
transmit power 20.0 mW (same for all nodes)
SINR threshold 4 dB

node well-behaves. First, as shown in Fig. 3, our analytical
results (calculated based on the proposed MAC model and the
analytical performance model in Section V-B1) are accurate as
compared with the simulation results. As also can be observed,
pf decreases as the detection threshold h increases. This is
simply because the higher h is, the less opportunity that the
detector state Xk will hit its maximal value (i.e., m̄σ as in
(19)). The figure also shows that the numerical solution error
of the analytical model, as indicated by ϵ in (14), has an impact
on the rate pf : a smaller error can result in lower false positive
rate. However, since the curves are very close, we can see that
a precision of 0.1 is enough to deliver satisfactory results.
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ana(ε=0.0002)
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Fig. 3. False positive rate pf under various detection thresholds. In the
figure, the error ϵ = −0.0498,−0.0098 and 0.0002 correspond to that σ =
0.1, 0.02 and 0.01, respectively.

2) Detection rate: We then evaluate the detection rate of the
HS detector by considering the misbehaving node with various
misbehaving strategies. Again, the results shown in Fig. 4
confirm that our analytical models are of high accuracy. Fig.
4(a) shows the average detection rate pd(D) under different
misbehaving intensities, where we fix D = 204 and h = 5.
As the misbehavior is becoming intensified (i.e., the target
node uses a smaller AIFSN and/or CWmin), more packets
as received by the AP are from the target node. Hence, the
detector state increases more frequently and is more likely to
hit its maximal value. As a result, the average detection rate
increases, which is clearly depicted in this figure.

Fig. 4(b) shows the performance of the HS detector asso-
ciated with the target node under different D and h, where
the misbehaving strategy is CWmin = 7 and AIFSN = 0. As
can be observed from this figure, in all misbehaving cases, the
detector becomes more reliable with a higher detection rate as
the detection window D gets longer. The misbehavior will be

4For ease of exposition, we use D to stand for DT ∗.
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captured almost surely when D is larger than 30. However, a
larger D indicates a longer detection delay. In this sense, we
should keep D small in order to detect real-time misbehavior.
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(a) Under different misbehavior in-
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Fig. 4. Average detection rate pd(D).

It is clear that the detector performance is affected by
the value of the parameter h. For the similar reason as we
discussed above about Fig. 3, when h increases, the detector
state associated with a target node becomes less frequently to
hit h. This means that the average detection rate will decrease
(i.e., a misbehaving node is less likely to be detected), as
shown in Fig. 4(b), and that the false positive rate will increase
(i.e., normal nodes become more likely to be wrongly warned),
as shown in Fig. 3. Since pf and pd(D) are two conflict
objectives, h should be carefully chosen in order to achieve
a balance between these two rates. For example, in order to
achieve a detection rate higher than 95% while keeping false
positive rate lower than 1%, we can choose h = 5 and D = 10.

3) Detection delay: The detection delay is measured as
the interval between the time when the misbehaving node
starts to misbehave and the time when it is detected by the
AP. In our simulations, the misbehaving node randomly picks
time instances to start misbehaving. The average detection
delay along with the 95% confidence interval error bars are
plotted in Fig. 5. As shown in this figure, the detection
delay decreases as the misbehavior intensity increases (i.e.,
either CWmin or AIFSN decreases). Roughly speaking, as
the intensity increases, the misbehaving node gets higher
throughput which results in that its corresponding detector
state Xk will get increased more frequently. In turn, the
time that Xk hits its maximal becomes shorter, which means
lower detection delay. In other words, as indicated by both
Fig. 4 and 5, aggressive misbehavior will be quickly and
accurately detected by the HS detector. This implies that,
for an aggressive misbehaving node, it will be identified
with a high probability even if it changes its misbehaving
strategy (or switches between aggressive misbehaving and
normal behaving) from time to time. On the other hand,
however, the detector becomes insensitive for inconspicuous
misbehavior (e.g., the cases with CWmin>20 and AIFSN=2
as shown in Fig. 5). For example, since the detection delay
is relatively high for inconspicuous misbehavior (but still
less than 0.2s), a misbehaving node may escape from being
caught by using a short misbehaving period and performing
moderate misbehavior during that period. Nevertheless, such
a misbehaving node will get much less throughput advantage

over other normal ones.
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Fig. 5. Simulated detection delay with 95% confidence interval error bars.

4) Comparison with FS detector: We compare the pro-
posed detector with the existing FS detector. We consider
the following four cases in the comparison study: the pa-
rameter of CWmin for all the 6 nodes in AC2 is chosen as
[5, 7, 15, 15, 15, 15] in case 1, [1, 3, 5, 15, 15, 15] in case 2,
[5, 7, 9, 15, 15, 15] in case 3 and [5, 5, 7, 7, 9, 15] in case 4.
For all the four cases, we fix AIFSN=3 and CWmax=1023
for all the nodes in AC2. Note that those nodes in AC2
with CWmin different from the normal value (i.e., 15) are
misbehaving nodes. The other parameters are set same as
above. In case 1, since there is only one misbehaving node,
the performance of HS and FS detectors is similar. However,
in the other three cases, we can clearly observe that the
proposed HS detector outperforms the existing FS detector.
When multiple nodes misbehave, the HS detector can identify
all of them with much higher probabilities than the FS detector.
Basically, the FS detector makes detection decisions based
on the relative resource sharing among the nodes in AC2.
Thus, as discussed in Section III-C, a misbehaving node
may not be identified if its relative resource sharing is low
as compared to other misbehaving nodes in the same AC.
Whereas, our HS detector make decisions based whether the
target node’s sharing exceeds the expected value. In addition,
the FS detector only uses the received packets from the nodes
in AC2 for detection, while the HS detector uses all received
packets, which means the latter utilizes more information for
making decisions.

However, Fig. 6 suggests that the proposed HS detector
generates lower detection rates for mild misbehaving nodes
(e.g., node 5 in case 4) than for aggressive misbehaving ones
(e.g., node 1 in case 4), because the impact of mild ones
is overwhelmed by the aggressive ones. We defer discussion
about handling multiple misbehaving nodes for Section VIII.

B. Performance of the countermeasure

The performance of the proposed countermeasure is also
evaluated and the results are shown in Fig. 7. As seen from
Fig. 7(a), the long-term average packet dropping rate of the
misbehaving node by the AP is increasing as the misbehaving
intensity increases (i.e., CWmin decreases). In particular, for
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(a) Case 1: node 1 misbehaves
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(b) Case 2: nodes 1 and 2 misbehave
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(c) Case 3: nodes 1,2,3 misbehave
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Fig. 6. Comparison between HS and FS detectors.

a small CWmin, the packets from the misbehaving node
will be almost surely dropped by the AP, which means that
the misbehaving node will be completely blocked by the
AP. The figure also demonstrates that the dropping rate is
significantly affected by the parameters Yinf and Ysup (i.e.,
the lower and upper bounds of Yk, respectively). As Ysup

increases, the dropping rate will increase. This is reasonable
because Yk will be more likely to stay at a state higher
than 1, which contributes to a higher dropping rate, referring
to (26). Therefore, we can tune Ysup in order to achieve a
high dropping rate for the misbehaving node. Similarly, if
we reduce Yinf , the dropping rate will decrease; however,
the impact of Yinf is less significant, which can be seen by
comparing the curves corresponding to [0, 1.1] and [−1, 1.1]
in Fig. 7(a).

As shown in Fig. 7(b), when we choose [Yinf , Ysup] =
[−0.2, 2], the average packet dropping rate for a normal node
(corresponding to CWmin=15 and AIFSN=3) is almost 0,
which means that, under such a parameter setting, the normal
node will not be affected by the proposed countermeasure. In
sum, by carefully choosing Yinf and Ysup, we can achieve a
satisfactory dropping rate as to punish the misbehaving node
while protecting its throughput when it is well-behaving.
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Fig. 7. Average packet dropping rate ρ̄. The different curves correspond to
different settings of [Yinf , Ysup].

VIII. DISCUSSIONS

A. Handling TXOP misbehavior

In this paper, we have assumed TXOP=0 for all nodes
and that the TXOP misbehavior is not present. For TXOP
misbehavior, the basic detection idea is quite straightforward,

i.e., to locate the starting and ending time of the TXOP
period and compare the duration with the prescribed value
as determined by the parameter TXOPLimit [25]. Since there
is no much randomness, the detection decision can be made
by analyzing a few packets, which to some extent is easier
than detecting contention window- and AIFS- misbehavior.
The above idea of TXOP misbehavior detection can be further
extended to handle scenarios of consecutive TXOP, referring
to the method in [25]. On the other hand, in cases with
nonzero TXOP parameters and in presence of possible TXOP
misbehavior, the detection and mitigation methods proposed in
this paper are still valid as long as the percentage of resource
sharing s for each node under normal cases (i.e., all nodes
do not misbehave) can be predicted. This can be achieved by
extending the MAC model in Section IV to accommodate the
cases with TXOPLimit> 0 (refer to the technique in [30] for
the extension).

B. Multiple misbehaving nodes

As has been shown in Fig. 6, the proposed HS detector
is able to identify multiple misbehaving nodes; whereas, the
detection rates for mild misbehaving nodes are lower than
those for aggressive misbehaving ones. This brings the pos-
sibility that an aggressive misbehaving node can screen other
mild ones. Consider two misbehaving nodes with mild and
aggressive misbehaving strategies, respectively, for instance.
It is possible that the impact of the mild misbehaving node
is overwhelmed by the aggressively misbehaving one, such
that the percentage of resource sharing of the mild node is
lower than the expected value s in view of the AP. In this
case, the AP may correctly detect the aggressive misbehavior
but ignore the mild one. However, together with the mitigation
mechanism, the aggressive one will be punished and eventually
driven to well-behaving, as long as it is rational (see Remark
3). Then, the mild one will be exposed to the detector and
will be punished. Suppose that all nodes are rational and
none of them wants to take the risk of being punished by
the mitigating mechanism to screen others, each misbehaving
node is unwilling to be too aggressive than others. Thus,
misbehaving nodes will take similar strategies, but still, they
will be punished simultaneously. In this sense, the proposed
mechanism with both detection and mitigation is effective
against multiple misbehaving nodes.
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IX. CONCLUSION

We have investigated the problem of misbehavior detection
and mitigation in cyber physical systems over IEEE 802.11e
based networks where the nodes are able to choose different
priority levels and different MAC parameters. Based on a
mathematical model of the percentage of resource sharing
of each node, we proposed a both hybrid-share real-time
detector and a mitigation mechanism. Theoretical performance
of the detector and the mechanism has been analyzed. Through
extensive simulations, we demonstrated that the false positive
rate is sensitive to the detection threshold but tolerable to the
error involved in computing the MAC model. We also show
that, by choosing appropriate parameters for the mitigation
mechanism, the packets from a misbehaving node will be
dropped with a high probability while those from a normal
node will be almost not affected. In our future, we will extend
the detector to detecting misbehavior in multihop networks.

APPENDIX

Proof of Theorem 1: Consider the stationary distribution
π∗ of the homogeneous Markov chain of {Xk}. Starting at a
generic time, say t = 1 without loss of generality, the detection
rate can be expressed as

pd(D) = 1− P[X1, X2, . . . , X⌊ D
T∗ ⌋]

=

⌊ D
T∗ ⌋∑
t=1

P[X1, . . . , Xt−1, X̂t]

,
⌊ D
T∗ ⌋∑
t=1

qt,

where X̂k and Xk stand for the events Xk = m̄σ and Xk ̸=
m̄σ (i.e., the events that the misbehavior is detected or not
detected), respectively. Clearly, q1 = π∗

m̄.

qt = P[X1, . . . , Xt−1, X̂t]

= P[X1, . . . , Xt−1, X̂t, Xt+1] + P[X1, . . . , Xt−1, X̂t, X̂t+1]

= P[X1, . . . , Xt−1, Xt, X̂t+1] + qtP[X̂t+1|X̂t]

= qt+1 + qtP
∗
m̄,m̄,

In the third equality, since we are considering stationary
distribution and t is generic, we can moving the hori-
zon to review the probability P[X1, . . . , Xt−1, X̂t, Xt+1] as
P[X1, . . . , Xt−1, Xt, X̂t+1]. This can be also seen by exam-
ining the reversibility of the Markov chain of states X̂k and
Xk. Then, the above equation indicates that

qt+1 = qt(1− P ∗
m̄,m̄) = qt = π∗

m̄,

where P ∗
m̄,m̄ = 0 as implied by (23). It then follows that (25)

holds, which completes the proof.
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