
A Distributed Secure Outsourcing Scheme for
Solving Linear Algebraic Equations in

Ad Hoc Clouds
Wenlong Shen, Student Member, IEEE, Bo Yin , Student Member, IEEE,

Xianghui Cao , Senior Member, IEEE, Yu Cheng , Senior Member, IEEE,

and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—The emerging ad hoc clouds form a new cloud computing paradigm by leveraging untapped local computation and storage

resources. An important application of ad hoc clouds is to outsource computational intensive problems to nearby cloud agents.

Specifically, for the problem of solving a linear algebraic equation (LAE), an outsourcing client assigns each cloud agent a subproblem,

and then all involved agents apply a consensus-based algorithm to obtain the correct solution of the LAE in an iterative and distributed

manner. However, such a distributed collaboration paradigm suffers from cyber security threats that undermine the confidentiality of the

outsourced problem and the integrity of the returned results. In this paper, we identify a number of such security threats in this process,

and propose a secure outsourcing scheme which not only preserves the privacy of the LAE parameters and the final solution from the

participating agents, but also guarantees the correctness of the final solution. We prove that the proposed scheme has low computation

complexity at each agent, and is robust against the identified security attacks. Numerical and simulation results are presented to

demonstrate the effectiveness of the proposed method.

Index Terms—Ad hoc cloud, linear algebraic equations, outsourcing, distributed consensus, security, privacy

Ç

1 INTRODUCTION

CLOUD computing is a revolutionary paradigm of deliv-
ering network resources, ranging from computational

power and data storage to platform and software, as a ser-
vice over the network [1]. As mobile devices are equipped
with increasing computational capability and memory, a
new peer-to-peer cloud computing model is proposed to
interconnect nearby devices to form an ad hoc cloud, in
which a device can either work as a service provider or a cli-
ent of a service requester. Such an ad hoc cloud computing
model can significantly improve the resource utilization of
local devices, while providing benefits of conventional
client-server cloud computing model over existing hetero-
geneous hardware [2]. Ad hoc cloud computing has drawn
much research attention on its architecture[3], service model
[4], applications [5], and security [6].

Computation outsourcing is one major application of
cloud computing, which enables resource limited cloud to

conduct originally impossible complex missions by out-
sourcing the workloads to the cloud. In spite of such a bene-
fit, cloud users should seriously consider the potential risks
before resorting to the cloud, since the user has little control
over the outsourced data and the behavior of the remote
cloud entities. Thus, a secure outsourcing scheme should
first have the capability to hide both the sensitive informa-
tion contained in the problem parameters and the computa-
tion results from the participating cloud agents and
malicious eavesdroppers as well. In fact, cloud service pro-
viders have various motivations to behave dishonestly. For
example, the cloud service providers may perform sloth-
fully to save computational resource or power. There also
exists the possibility that a cloud service provider is com-
promised by a malicious attacker, thus intentionally mis-
leading the client to a false computation result. Therefore,
for a secure outsourcing scheme, it is important that the cor-
rectness of the returned results of the outsourced problem
can be verified and guaranteed to be correct. Moreover, the
local computation complexity in a secure outsourcing
scheme, including that incurred by certain privacy preserv-
ing and result verifying computations, should not exceed
that by locally solving the original problem alone.

In [7], Gentry constructed the first fully homomorphic
encryption (FHE) scheme, which allows computing arbitrary
functions with encrypted data. Following [7], many schemes,
e.g., [8], [9] were proposed to improve the efficiency of FHE
for practical applicability. An important technique for effi-
cient verification of arbitrarily complex computations [10],
[11] is interactive proofs, where a powerful prover can

� W. Shen, B. Yin, and Y. Cheng are with Department of Electrical and
Computer Engineering, Illinois Institute of Technology, Chicago, IL
60616. E-mail: {wshen7, byin}@hawk.iit.edu, cheng@iit.edu.

� X. Cao is with School of Automation, Southeast University, Jiangsu,
Sheng 210018, China. E-mail: xhcao@seu.edu.cn.

� X. Shen is with Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: xshen@bbcr.uwaterloo.ca.

Manuscript received 21 Apr. 2016; revised 25 Oct. 2016; accepted 22 Dec.
2016. Date of publication 4 Jan. 2017; date of current version 5 June 2019.
Recommended for acceptance by C. Rong.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2016.2647718

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019 415

2168-7161� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0001-9574-7032
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-6771-0571
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0002-4837-3370
mailto:
mailto:
mailto:
mailto:

convince a weak verifier of the truth of statements that the
verifier could not compute on its own. Homomorphic
encryption and computation verification techniques con-
struct the foundations of secure outsourcing scheme in a cli-
ent-server cloud setting. However, in an ad hoc cloud
setting, the aforementioned techniques are no longer appli-
cable. Unlike the traditional cloud computing model which
features in one or multiple powerful servers, in the ad hoc
cloud network, the resource pool is formed by leveraging
untapped resources from local devices, each of which has
only limited computational power. Resource limited entities
in the ad hoc cloud are often unfordable to perform the FHE
schemes and verification protocols.

Solving linear algebraic equations (LAEs)Ax ¼ b is one of
the most frequently usedmathematical tool for a large variety
of real-world engineering and scientific computations. Unlike
most of other secure outsourcing works in the traditional
cloud computing model with one or several powerful cloud
servers, in this paper, we study the problem of securely out-
sourcing the LAE problem in an ad hoc cloud network com-
prised ofmultiple agentswith limited computation resources.
The work in [12] proposes a consensus-based distributed
algorithm, which enables multiple agents to solve the LAE
problem in a collaborative manner. In this algorithm, each
agent is assigned one (or possible multiple) row of [A, b], say
[Ai;bi]. Starting with a feasible solution to its subproblem
Aix ¼ bi, each agent iteratively updates its local solution
based on solutions from neighboring agents. Eventually, all
agents will agree on a consensus, which is the exact solution
of the original LAE problem. Although this algorithm is suit-
able to outsourcing an LAE problem to an ad hoc cloud net-
work, the collaborative nature makes it vulnerable to
deliberate erroneous updates. A malicious agent is able to
mislead the final consensus to a wrong solution bymisreport-
ing its local solution to neighbors. What’s worse, continuous
incorrect updates will impede the progress of consensus and
even prevent other agents from reaching an agreement.

In this paper, we propose a secure outsourcing scheme
for solving LAE problems in ad hoc cloud. Through the
analysis of potential security threats, we categorize them
into three classes based on the corresponding effects. We
define our design goals for a secure outsourcing scheme as
to preserve LAE problem privacy and guarantee correct
final returned solution. On the basis of the consensus-based
algorithm presented in [12], we design a new robust algo-
rithm which can prevent malicious (or compromised)
agents from manipulating the final solution by injecting
unfaithful intermediate computation results during the con-
sensus process. However a malicious or compromised
cloud agent may still diverge the algorithm and hence
launch a denial of service attack by continuously injecting
unfaithful data during the consensus process. To deal with
this issue, we further propose a misbehavior detection
mechanism. The main idea of the detection mechanism is
that neighboring agents cooperatively verify each other’s
intermediate computation results at each step of the consen-
sus process with a probability p. Such a detection mecha-
nism, together with the fault tolerance feature of the robust
consensus algorithm, can protect the integrity and availabil-
ity of the solution to the outsourced LAE. In addition,
another building block of our proposed secure outsourcing

scheme is a privacy disguising technique, which preserves
the privacy of the sensitive information contained in both
the LAE problem parameters and the final solutions.

The main contributions of this paper can be summarized
as follows.

1) We design a robust version of the consensus-based
algorithm for distributively solving an LAE problem
with fault tolerance.

2) Based on the robust distributed algorithm, we design
a secure outsourcing scheme for LAE in the ad hoc
cloud environment, with the capabilities of privacy
preserving and misbehavior detection. The perfor-
mance of the scheme is analyzed theoretically.

3) We demonstrate the performance of the proposed
outsourcing scheme through both theoretical analy-
sis and numerical results. We also conduct simula-
tions to evaluate the performance of the scheme in
WiFi based ad hoc clouds with packet losses.

The remainder of this paper is organized as follows.
Section 2 reviews more related work. Section 3 describes the
system model and preliminaries on distributed algorithms
for solving LAE problems. Section 3.2 presents the attack
model and our design goals. Section 4 presents details of
the proposed algorithm. Theoretical performance analysis is
given in Section 5, followed by numerical results in
Section 6. Section 7 discusses collusion attacks and Section 8
concludes this paper.

2 RELATED WORK

Recently, there has been steady progress in the study of
securely outsourcing computationally intensive problems
such as linear equations [13], linear programming [14],
sequence comparisons [15] and DNA searching [16]. For
example, the work in [17] proposes a protocol for secure and
private outsourcing of linear algebra computations, especially
the problem of multiplying large-scale matrices, to either two
or one remote server(s). The approach is based on the secret
sharing scheme proposed in [18], without carrying out expen-
sive cryptographic computations. In [14], secure outsourcing
of a linear programming problem is investigated where mali-
cious behavior can be detected by a computation result verifi-
cation mechanism by exploiting the properties of the dual of
the original LP problem, while the problem confidentiality is
preserved by using randommatrix and vectors. Based on ran-
dom scaling and permutation, matrix masking algorithms for
secure outsourcing matrix inversion and matrix determinant
computation are proposed respectively in [19] and [20].

There are a few works on secure outsourcing of the LAE
problem. The work in [21] first introduces several mecha-
nisms for secure outsourcing of scientific computations,
which includes the disguising scheme for outsourcing LAE
problem. The work in [13] proposes a secure scheme for out-
sourcing a large-scale LAE problem, where they applied the
Jacobi method for solving the LAE problem and preserved
the privacy by hiding the problem information based on a
homomorphic encryption scheme. A secure outsourcing
scheme for LAE problem based on conjugate gradient
method (CGM) is presented in [22], and the work in [23]
develops a general method for disguising the LAE problem.
However, these existing studies focused on outsourcing this

416 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

problem to a single remote cloud server, which is essentially
a centralized scheme. In this paper, we consider a different
application scenario—outsourcing the LAE problem to an
ad hoc cloud, with the cloud agents involved in solving the
problem in a completely distributed manner.

Distributed solutions for large-scale LAE problems have
been studied. The mainstream approach is to decompose the
original problem into smaller ones which can be solved by
parallel processors [24], [25]. However, these parallel algo-
rithms often assume special structure of the matrix A.
Recently with the advances in distributed consensus algo-
rithms [26], [27], a consensus-based distributed solution to the
LAE has been proposed in [12]. Instead of performing prob-
lem decomposition, the algorithm assigns each agent one (or
possiblymultiple) row ofA and b, sayAi and bi, respectively.
Each agent starts with a feasible solution to the subproblem.
By applying an averaging consensus algorithm where each
agent only talks to its neighbors, the solutions obtained by the
agents can finally converge to the correct solution of the origi-
nal problem, and the convergence speed is exponentially fast.
Compared to classic algorithms, for example, Jacobi iterations
and the classical Kaczmarz method, the consensus-based
algorithm does not make special assumptions about A, and
does not require the network topology to be strongly com-
plete. It has been shown in [12] that, if the network topology
of the agents is repeatedly jointly strongly connected over
time, the convergence is guaranteed and the correct solution
A�1b can be obtained.

The consensus-based algorithm provides an interesting
and promising way for outsourcing a large-scale LAE prob-
lem to a number of distributed agents, each of which has
only limited computation resources. Despite such merit, the
algorithm is susceptive to several malicious attacks ranging
from sensitive data probing and disobeying the updating
rule as the algorithm runs. With potentially many attack
strategies, an adversary can manipulate the final results and
even cause the whole algorithm diverge. To the best of our
knowledge, this paper for the first time systematically stud-
ies the security issues in outsourcing an LAE problem to a
distributed ad hoc cloud.

3 PROBLEM STATEMENT AND PRELIMINARIES

3.1 System Model

In this paper, we study a computation outsourcing problem
in an ad hoc cloud system, as illustrated in Fig. 1. The ad
hoc cloud comprises of multiple agent nodes, each of which

is capable of performing certain computation tasks within
its computational resource limit. The physical devices asso-
ciated with these agents can be desktops, mobile devices, or
servers. The connection between agents can either be wired
or wireless. Although the consensus-based algorithm we
considered works with dynamic network topologies, as
long as the network topology is repeatedly jointly strongly
connected [12], for ease of presentation, in this paper we
only consider the static network topology. One of these
agents is interested in solving a large-scale LAE problem in
the form Ax ¼ b, where A 2 Rn�n is a non-singular constant
matrix, b 2 Rn is a constant vector, and x 2 Rn is the
unknown variable to be solved. Assume that n is large such
that solving this LAE problem is computationally intensive
considering the limited computing power at one cloud
agent (solving this problem directly takes time Oðn3Þ). To
distinguish the problem outsourcer from other agents in the
ad hoc cloud, the outsourcer agent of this LAE problem is
denoted as the client. Thus, the client resorts to the ad hoc
cloud in which other agents who are willing to share their
computation power, either voluntary or paid, can collabora-
tively work towards solving this LAE problem.

Through a distributed algorithm, a solution to the out-
sourced LAE problem can be eventually reached via collab-
oration over all the participating agents in the ad hoc cloud.
However, in most of the real world application scenarios,
there potentially exists malicious agents aiming to break
down the problem solving process for a variety of motiva-
tions. For example, they may either perform selfishly by
claiming the revenue but not fulfilling their tasks, or spite-
fully preventing the client from deriving the correct solu-
tion. Moreover, the parameters and results of the
outsourced problem may contain privacy information that
the client is not willing to share with other agents. In this
paper, the private information in the LAE contains magni-
tudes and interrelationships of the elements in A, b, and the
solution x�, and the number and positions of zero elements
in these matrix/vectors.

3.2 Attack Model

In the multi-agent ad hoc cloud, each agent has a unique
identity number, e.g., the agents are indexed by 1; 2; . . . ; n.
All the agents form a connected cloud network and the net-
work-wide time synchronization is always guaranteed. We
assume that the connectivity is known by the client. This
can be achieved by running a secure neighbor discovery
process beforehand [28]. We also assume that each message
in the system is authenticated, so that a malicious agent
may record and then play back a message but cannot mod-
ify it. For the malicious nodes, we assume that they do not
collude (the cases with colluding attacks will be discussed
in Section 7). We further assume that in each agent’s neigh-
borhood, the number of honest agents is greater than the
number of malicious ones.1 The communications between

Fig. 1. Overview of the distributed outsourcing scheme.

1. This local honest majority assumption is an f-fraction local model,
which has been used in many other literatures [29], [30]. Since the
detection mechanism relies on neighbor-checking and runs in a distrib-
uted manner based on the majority rule, the above assumption guaran-
tees that the majority rule in each agent’s neighborhood does not
generate false decisions. In our future work we will study the perfor-
mance of our scheme in the general honest majority model.

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 417

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

agents are assumed reliable (the cases with packet losses
will be evaluated and discussed in Section 6.3).

When an LAE problem is outsourced to the ad hoc cloud,
the client will have little control over other agents involved in
the computing.Without a proper defensemechanism, a cloud
agent may perform dishonestly for a variety of reasons. We
assume that malicious agents in the ad hoc cloud, either on
their own initiative or compromised, are interested in the
information contained within the original problem parame-
ters as well as the problem’s final solution. Malicious agents
also have the motivation to break down the distributed algo-
rithm, either by misleading the algorithm to a false result or
diverging the consensus of the algorithm, thus launching a
denial of service attack. In this section, we explicitly analyze
the misbehavior possibly conducted by malicious agents and
how these attacks affect the final solution.

Depending on their purposes, we specify the behavior of
malicious agents into three categories.

� Probing sensitive information: In the basic consensus-
based algorithm, each participating agent is assigned
with a row of A and the corresponding component of
b. This setup process reveals part of information of A
and b. After the consensus is finally reached, all the
participating agents will obtain the solution of the out-
sourced LAE problem, which is highly undesirable,
since malicious agents may collude with each other to
obtain more information of A and b. Therefore, it is
necessary for the outsourcing client to disguise the
original problem before sending it to the cloud. The
disguising should be able to hide the original problem
parameters as well as the solution to the outsourced
problem. How to preserve these privacy information
contained in the matrix has been previously studied
by many researchers [19], [20], [21]. However, their
solutions either reveals partial information or involves
Oðn3Þ computation complexity.

� Manipulating the solution: A malicious agent can mis-
lead the algorithm to a false solution by injecting a
false intermediate result during the consensus pro-
cess. For example, at the kth iteration, malicious
agent i sends out a false intermediate result xiðkÞ,
which results in AT

i xiðkÞ ¼ b
0
i 6¼ bi. In the subsequent

iterations, according to the update rule in (1),
AT

i xiðlÞ ¼ AT
i xiðkÞ ¼ b

0
i for l > k. The algorithm will

finally converge to a false result x0, which is the solu-
tion to Ax0 ¼ b

0
where b0 ¼ ½b1; b2; . . . ; b0i; . . . ; bn�T.

� Diverging the consensus: Denial of service attack is a
common attack in distributed computing systems
[26], [31]. Without a proper defense mechanism, a
malicious agent can easily diverge the consensus
algorithm by randomly updating xiðtÞ in each iter-
ation. If the malicious agent keeps doing this, obvi-
ously the distributed consensus algorithm will not
converge. Existing detection mechanisms usually
require global system information [32] or impose
high computational burden to the detector [33]. A
straightforward solution to prevent such an attack
is resorting to the help from other nodes during
the algorithm setup stage: distribute AT

i and bi not
only to agent i, but also to its neighbor agents so

that neighboring agents can verify each other’s
updating value per step by checking whether
AT

i xiðtÞ ¼ bi. A randomly chosen xiðtÞ by malicious
agents will not likely to satisfy this checking equa-
tion and gets detected by their neighbors as a
result. However, a “smart” enough malicious agent
can still break the convergence of the algorithm by
choosing xiðtÞ for each iteration within the solution
space of AT

i xiðtÞ ¼ bi, for example, resending the
initial guess repeatedly. Thus simply checking
AT

i xiðtÞ will not prevent the solution process from
diverging, which calls for sophisticated mutual
verification methods.

According to the aforementioned analysis, securely out-
sourcing an LAE problem in an ad hoc cloud requires the
following properties.

� Privacy preserving: Participating agents, during col-
laborating with each other for solving the out-
sourced problem, cannot infer the client’s privacy
information contained in the input A, b, and the
solution x.

� Misbehavior detection: Misbehaving agents can be
detected with a high probability during participating
the outsourced computation. The validation of final
solutions can be guaranteed.

� Low complexity: The computation burden on each
participating agent, as well as the client, should be
kept below Oðn3Þ, i.e., less than that of solving the
original LAE problem by the client himself.

3.3 Preliminaries on Distributively Solving LAE

In order to allow multiple agents cooperatively solving the
LAE problem Ax ¼ b, a distributed algorithm that can
decompose the LAE problem into smaller subproblems is
the foundation. In this paper, we build our secure outsourc-
ing scheme over a consensus-based distributed algorithm
proposed in [12]. Compared to other algorithms for solving
the LAE problem, the consensus-based algorithm has no
special requirement on A, and achieves an exponential con-
vergence rate. The key idea of this algorithm is summarized
as follows.

We use boldface letters to represent column vectors and
matrices. Let x� be the exact solution of the LAE problem. Let
Ai be the ith column of the matrixAT and ½AT

i bi� be a distinct
row of the partitioned matrix ½A b�, where T is the transpose
operator. Assume that there are n connected agents that forms
a network (the cases when there are less than n agents are dis-
cussed in Section 4.2). Each agent is allocated one distinct
row, and the agent who receives the ith row is denoted as
agent i. To start the algorithm, each agent picks an initial
guess of x�, denoted as xið0Þ; i 2 ½1; 2; . . . ; n�, such that
AT

i xið0Þ ¼ bi. Let Ki 2 Rn�ðn�1Þ be a matrix whose column
span is the kernel ofAT

i , i.e., A
T
i Ki ¼ 0 and rankðKiÞ ¼ n� 1.

Each agent iteratively updates its guess following an updat-
ing rule in the form xiðtþ 1Þ ¼ xiðtÞþ KiuiðtÞ so that, within
the iteration process, the local solution of each agent always
satisfies AT

i xiðtÞ ¼ bi. In order to guarantee the convergence,
uiðtÞ is chosen as the least square solution to xiðtÞþ
KiuiðtÞ ¼ 1

di
ðPj2N i

xjðtÞÞ, where N i denotes the set of neigh-
bor agents of agent i (i 2 N i for convention), and di is the

418 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

number of neighbors of agent i. With uiðtÞ properly deter-
mined, the update process can then be expressed as

xiðtþ 1Þ ¼ xiðtÞ � 1

di
Pi dixiðtÞ �

X
j2N i

xjðtÞ
0
@

1
A; (1)

where Pi ¼ KiðKT
i KiÞ�1KT

i is the orthogonal projection on
the kernel of Ai.

For a nonsingular A, if the network topology of these
agents is a connected graph, all local solutions would reach
a consensus, denoted as x̂ [12]. Note that AT

i x̂ ¼ bi holds for
all i 2 f1; 2; . . . ; ng, ensuring that x̂ is the solution of this
LAE problem. That is, Ax̂ ¼ b.

4 SECURE LAE OUTSOURCING

Our secure outsourcing scheme for LAE consists of three
basic components: a robust consensus-based algorithm for
distributedly solving the LAE, a privacy preserving algo-
rithm for defeating the probing sensitive information attack,
and a cooperative verification and misbehavior detection
mechanism for detecting attacks intended to manipulate
solution or diverge the consensus.

4.1 Robust Consensus-Based Algorithm

Equation (1) provides a collaborative framework for autono-
mous agents to solve a large-scale LAE problem. However,
the updating rule in (1) is vulnerable to false messages,
referring to our analysis in Section 3.2. Furthermore, such
an updating process incurs high computation cost and stor-
age requirement when the problem dimension n is very
large. Specifically, the straightforward calculation of Pi as
KiðKT

i KiÞ�1KT
i involves matrix-matrix multiplications

which have Oðn3Þ time complexity. In addition, PiðdixiðtÞ�P
j2N i

xjðtÞÞ incurs matrix-vector multiplications which
take time Oðn2Þ. Storing a large-scale matrix is also an
expensive burden for some storage-constrained devices.
Thus, we are motivated to design a robust and efficient ver-
sion based on the preliminary consensus algorithm.

Observing that Pi is the orthogonal projection on the ker-
nel of Ai, it can be calculated as

Pi ¼ I� PAT
i
¼ I�AiA

T
i

AT
i Ai

; (2)

where I represents the identity matrix of compatible dimen-
sion. PAT

i
is the orthogonal projection on AT

i and can be cal-
culated with time complexity Oðn2Þ. Let �xiðtÞ ¼
1
di

P
j2N i

xjðtÞ denote the average value of agent i’s
neighbors’ updates. Substituting (2) into (1), the updating
process can be expressed as

xiðtþ 1Þ ¼ PAT
i
xiðtÞ þ �xiðtÞ � PAT

i
�xiðtÞ

¼ AiA
T
i

AT
i Ai

xiðtÞ �AiA
T
i

AT
i Ai

�xiðtÞ þ �xiðtÞ

¼ AT
i xiðtÞ

kAT
i k2

Ai �AT
i �xiðtÞ

kAT
i k2

Ai þ �xiðtÞ

¼ bi

kAT
i k2

Ai �AT
i �xiðtÞ

kAT
i k2

Ai þ �xiðtÞ;

(3)

where k � k represents the 2-norm of a vector. For conve-
nience of reference, our proposed consensus-based algo-
rithm is

xiðtþ 1Þ ¼ bi

kAT
i k2

Ai �AT
i �xiðtÞ

kAT
i k2

Ai þ �xiðtÞ: (4)

The proposed algorithm (4) has low computation com-
plexity, as specified in Lemma 1.

Lemma 1. In each iteration of the proposed consensus-based
algorithm (4), the computational cost for agent i is OðdinÞ.
Lemma 1 directly follows the algorithm in (4). In (4), the

first term of the right-hand side is a constant. Thus, each
update only needs to compute the second and the third
terms of the right-hand side, which incurs time complexity
OðdinÞ. Besides, each agent only needs to store his own
½AT

i bi�, which is a 1� ðnþ 1Þ vector.
If an agent doesn’t update its local solution according to

(4) (e.g., agent i broadcasts an xi to its neighbors such that
AT

i xi 6¼ bi), we call that this agent conducts a false update.
The proposed algorithm in (4) is robust against a finite num-
ber of false updates, as presented in Theorem 1.

Theorem 1. The revised consensus-based algorithm in (4) is
robust against a finite number of false updates. That is, as long
as all agents (including malicious ones) update their local solu-
tions according to (4) from a certain moment on, these local sol-
utions will converge to the correct solution.

Proof. According to (4), we can see that each update always
maintains AT

i xiðtÞ ¼ bi. That is,

AT
i xiðtþ 1Þ ¼ AT

i

bi

kAT
i k2

Ai �AT
i

AT
i �xiðtÞ

kAT
i k2

Ai þAT
i �xiðtÞ

¼ bi �AT
i �xiðtÞ

AT
i Ai

kAT
i k2

þAT
i �xiðtÞ

¼ bi �AT
i �xiðtÞ þAT

i �xiðtÞ
¼ bi:

Hence, as long as the agents update their local solu-
tions according to (4), our algorithm always ensures that
AT

i xiðtÞ ¼ bi regardless of the updates of their neighbors.
Moreover, the initial local solution of each agent can be
selected randomly. If, from a certain moment on, all the
updating follows Equation (4), the past false updates just
behave as selecting a different initial value such that
those solutions can still converge to the correct solution
of the outsourced LAE problem. In contrast, a single false
update may impact the final solution of the original con-
sensus-based algorithm, as discussed in Section 3.2 tu

4.2 When There are Less Than n Agents

In practice, it is unlikely to have exactly n available agents
for solving a large-scale LAE problem. Now we extend our
consensus-based algorithm to work with m agents where
m < n. For the m-agent ad hoc cloud which is assumed
connected, we partition the n rows of ½A b� into m groups
and assign each agent a distinct group, as shown in Fig. 2.
Consider cloud agent i, 1 � i � m. It runs ri instances of
algorithm (4) during the consensus process, where ri

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 419

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

denotes the number of rows assigned to it. Each of these
instances can be viewed as a distinct virtual agent responsi-
ble for a single row of ½A b�. Since the computations of all
virtual agents associated with one physical agent are carried
out by the physical agent itself, these virtual agents are con-
sidered completely connected. For two virtual agents
belonging to two different physical agents, they are consid-
ered connected if the two physical agents are also con-
nected. In this way, the whole system can be viewed as a
connected n-agent virtual cloud. To update the local solu-
tion of each virtual agent, a straightforward strategy for
agent i is to send all local solutions of its associated ri virtual
agents to its neighbors. Observing that only the average
value of neighbors’ local solutions matters in updating the
local solution of an agent, the communication overhead can
be lessened for agent i by only broadcasting the average
value of the ri local solutions along with ri. With such infor-
mation obtained from neighbors, a physical agent can easily
calculate �xiðtÞ can then updates the local solutions for each
of its associated virtual agents.

It is worth noting that the network topology of all the vir-
tual agents is still a connected graph, hence the convergence
of the algorithm is guaranteed. As long as each honest agent
running its virtual agents following the algorithm in (4), the
robustness property in Theorem1 is still valid. For the compu-
tational cost, since all the virtual agents in agent i have the
same neighbor set (each virtual agent is a neighbor of itself),
agent i only needs to compute �xiðtÞ once in each iteration. The
computational cost of �xiðtÞ isOððri þ diÞnÞ for agent i, and the
computational cost of running ri virtual agents to compute ri
local solutions is OðrinÞ. In sum, the computational cost for
agent i in each iteration isOððdi þ 2riÞnÞ.

4.3 Privacy Preserving

In order to keep confidential the LAE parameters A, b, and
the solution x�, the client needs to disguise the problem
before outsourcing it to the cloud. Note that such a disguis-
ing algorithm should have low computation complexity,
since any computation at the complexity level of Oðn3Þ
incurred at the client will demotivate the whole outsourcing

scheme. In the following, we develop a low-complexity
algorithm for disguising the outsourcing problem.

We start with introducing a random noise Dx to mask the
solution x� of the original problemAx ¼ b as follows. Dx fol-
lows uniform distribution whose support is ½�u; u�, where u
is themaximum absolute value of elements inA and b.

Aðx� þ DxÞ ¼ Ax� þADx

¼ bþADx

¼ bþ Db:

(5)

Thus, the client generates an n dimensional random vector
Dx, and computes Db ¼ ADx. Then the original problem is
transformed into Ax ¼ bþ Db.

Next, we consider hiding the problem parameters A
and b. One straightforward method is to generate a ran-
dom non-singular n� n matrix Q, and outsource the
problem A0x ¼ b0, with A0 ¼ QA and b0 ¼ Qðbþ DbÞ.
However, the computation of QA commonly has time
complexity Oðn3Þ, which violates the motivation of out-
sourcing. Hence, we resort to elementary transformations
to transform the LAE problem. For one thing, all non-sin-
gular matrices with the same size are equivalent under
elementary transformations, meaning that A can be trans-
formed to any non-singular n� n matrix by a finite
sequence of elementary operations. For another, each ele-
mentary operation on a matrix takes time OðnÞ, which
enables the client to control the computation complexity
of the transformation of the LAE problem.

There are three types of elementary row (resp. column)
operations: multiplication, switching and addition. The
aggregated multiplication operation can be characterized
by a diagonal matrix

Qm ¼
a1

a2

. .
.

an

0
BBB@

1
CCCA;

where a1; . . . ;an are random non-zero scalars. Left (resp.
right) multiplying a matrix by Qm is equivalent to multiply-
ing the ith row (resp. column) of that matrix with scalar ai.

LetQp represents the aggregated switching operation,

Qp ¼ upð1Þ upð2Þ � � � upðnÞ
� �

;

where p denotes a permutation of n elements; and ui

denotes a vector of length n with 1 in the ith position and 0
in other positions.

An addition operation which adds row (resp. column) j
multiplied by a non-zero scalar b to row (resp. column) i
can be denoted by a tuple t , ði; j;bÞ, where i and j are two
distinct indexes. Let Qt denote the corresponding elemen-
tary matrix of operation t.

Since an arbitrary non-singular n� nmatrix can be trans-
formed from A by a finite sequence of elementary opera-
tions, e.g., QmQpQt1

� � �QtK
A, we transform the LAE

problem with two random diagonal matrices Qm;Q
0
m; two

random permutation matrices Qp;Q
0
p and two sequences

of random elementary addition operations fQt1
; . . . ;QtK

g;
fQ0

t1
; . . . ;Q0

tK0 g.

Fig. 2. Proposed scheme with less than n agents.

420 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

More precisely, we respectively transform A and b into
A0 and b0, where

A0 ¼ QmQpQt1
� � �QtK

AQ0
mQ

0
pQ

0
t1
� � �Q0

tK0 (6)

b0 ¼ QmQpQt1
� � �QtK

ðbþ DbÞ (7)

If the client outsources the transformed LAE problem
A0y ¼ b0, let y� be the returned solution. One can check that

Q0
mQ

0
pQ

0
t1
� � �Q0

tK0y
� ¼ x� þ Dx (8)

which indicates that the client is able to derive the solution
of the original LAE problem x� from y�.

For convenience, we hereby summarize the disguising/
recovery algorithms for privacy preserving as follows:

1) Key Generation: The client generates a random vector
Dx, two random diagonal matrices Qm;Q

0
m; two ran-

dom permutation matrices Qp;Q
0
p and two sequen-

ces of random elementary addition operations
fQt1

; . . . ;QtK
g; fQ0

t1
; . . . ;Q0

tK0 g.
2) Problem Disguising: The client computes A0 and b0

according to (6) and (7), respectively.
3) Outsourcing: The client outsources the disguised ver-

sion of the original problem A0y ¼ b0 to the cloud.
4) Solution Recovery: After receiving the solution y�, the

client obtains the solution to the original problem by
computing x� ¼ Q0

mQ
0
pQ

0
t1
� � �Q0

t0
K
y� � Dx.

Lemma 2. If both K and K0 are bounded above by OðnÞ, the
computation complexity of the disguising and recovery algo-
rithms for preserving the privacy of the outsourced LAE prob-
lem is Oðn2Þ.

Proof. Since K and K0 are both bounded by OðnÞ, the com-
putation complexity of the key generation process isOðnÞ.
Computing A0 involves aggregated row and column mul-
tiplication; aggregated row and column switching; and K
row additions andK0 column additions, which takes time
4n2 þ ðK þK0Þn ¼ Oðn2Þ. The complexity of calculating
Db is Oðn2Þ since it involves a matrix-vector multiplica-
tion. Once obtaining bþ Db, b0 can be computed with
complexity OðnÞ through K row additions, one aggre-
gated row switching and one aggregated row multiplica-
tion. Similarly, to derive the solution, the client computes
x� ¼ Q0

mQ
0
pQ

0
t1
� � �Q0

tK0 y
� � Dx with complexity OðnÞ. In

summary, the computation complexity for disguising and
recovery of the LAE problem isOðn2Þ. tu

Remark 1. In [21], random scaling and permutations are
employed to disguise a matrix. Based on a similar idea,
matrix masking algorithms for securely outsourcing
matrix inversion and matrix determinant computation
problems are proposed in [19] and [20], respectively. These
methods, however, have two common drawbacks. For one
thing, since scaling and permutation cannot mask zero ele-
ments, the amount of zero entries remains the same after
transformation. For another, the non-zero entries in A and
A0 have the following relationship for any h; i; j; k:

a0ija
0
hk

a0ika
0
hj

¼ aijahk
aikahj

:

In our algorithm, these issues can be addressed by ele-
mentary addition transformations. The proposed matrix
disguising algorithm can also be interpreted as protecting
A by both left-multiplying and right-multiplying two non-
singular matrices, similar as that in [23]. Nevertheless, our
procedure has two benefits compared to that used in [23]:
i) The mask matrices in [23] are required to be sparse in
order to guarantee low complexity. We give a systematic
procedure to disguise A through a series of elementary
operations of low complexity, which avoids generating the
aforementioned two matrices directly. We hence do not
require the equivalent mask matrices in our method, e.g.,
M ¼ QmQpQt1

� � �Q0
tK

andN ¼ Q0
mQ

0
pQ

0
t1
� � �Q0

tK0 to be

sparse. This is because the equivalentmaskmatrices gener-

ated by our method may be dense as the product of

extremely sparse matrices can be completely dense [34]. ii)
In our method, the client can easily control the computa-

tion overhead of problem disguising and solution recovery

by adjusting parametersK andK0, while the computation

complexity of the algorithm in [23] depends on the sparsity

of those two mask matrices whose generation method is

not given in [23].

4.4 Misbehavior Detection

In Section 3, we have analyzed the possible misbehavior
taken by malicious agents. A simple updating verification
of AT

i xiðkÞ ¼ bi is effective only for detecting malicious
agents who randomly update their values in each iteration.
A stronger detection approach is to let the ad hoc agents
monitor their neighbors’ updates by double checking
whether their computation is according to the algorithm in
(4). From (4), we notice that at ðkþ 1Þth iteration, for agent j
to verify the update xiðkþ 1Þ from agent i, agent j requires
the knowledge of AT

i , bi, and �xiðkÞ. During the problem
setup stage, the information distributed to agent j should
include not only ½AT

j bj�, but also ½AT
i bi� for i 2 N j. For each

i 2 N j, it can send agent j the set of solution vectors it col-
lected, i.e., fxlðkÞjl 2 N ig, so that agent j can compute �xiðkÞ
and then verify xiðkþ 1Þ.

We set the update process as follows: in ðkþ 1Þth itera-
tion, agent i broadcasts message

Fiðkþ 1Þ ¼ xiðkþ 1Þ; N i; fxmðkÞjm 2 N ig; Fi;k

� �
: (9)

where Fi;k is the alarm information indicating the malicious
agent detected by i at iteration k. Fi;k ¼ 0 if no misbehavior
has been detected; Fi;k ¼ l if agent l is detected by agent i as
a malicious agent. To verify xiðkþ 1Þ, agent i’s neighbor
agents recompute xiðkþ 1Þ according to (4) using the infor-
mation of AT

i , bi and xmðkÞ contained in Fiðkþ 1Þ. If agent j
detects its neighbor i conducts a malicious behavior, in its
next broadcasting messageFiðkþ 2Þ, it sets Fj;kþ1 ¼ i. Based
on our assumptions that the majority of agents are honest
within any agent’s neighborhood, a malicious agent will be
monitored by more than half of its neighbors. Thus more
than half of its neighbors will generate alarm messages
reporting the malicious agent. Once there exists a certain
number (half of the number of i’s neighbors) of alarm mes-
sages denoting agent i’s misbehavior in the same iteration,
agent i will be confirmed as a malicious agent and

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 421

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

eliminated from the cloud. The share of the outsourcing
problem originally assigned to i will then be reassigned to
one of his neighbors.

It is worth noting that the cooperative detection mecha-
nism introduced above incurs extra computational over-
head to each agent. When agent j double checks the
computation according to (4) for its neighbor i, it incurs a
workload with complexity OðdinÞ. If agent j monitors all its
neighbors, the total workload will be OðPdj

1 dinÞ. Under a
well-connected network topology, for example, a complete
network graph with di ¼ n� 1 for any agent i, in a single
iteration the verification computational overhead for each
monitoring agent is Oðn3Þ, resulting in the total computa-
tion cost exceeding Oðn3Þ.

To reduce the computation overhead, we further set a
verification probability p: at each iteration, agent j will ver-
ify a received message from its neighbors with probability
p. For this probabilistic verification scheme, every agent
needs to keep its neighbors’ broadcast information until the
end of next iteration. Suppose at ðkþ 1Þth iteration, agent j
receives an alarm message Fm;k ¼ i, then agent jwill double
check xiðkÞwith probability 1, thus requiring the knowledge
of FiðkÞ. The system parameter p can be tuned to balance
the detection performance and computational overhead.
The verification algorithm is summarized in Algorithm 1.

Algorithm 1. Verification Process of Agent i at Iteration
kþ 1

INPUT: Fiðkþ 1Þ, FiðkÞ, Aj, bj8j 2 N i; p;
OUTPUT: Fi;k; Fi;kþ1;
for j 2 N i do

if Fj;k 6¼ 0 and Fj;k 2 N i then
compute x0Fj;kðkÞ by (4);

if x0Fj;kðkÞ 6¼ xFj;kðkÞ then
Fi;k ¼ Fj;k;

end
end
randomly choosem from ð0; 1Þ;
ifm < p then

compute x0jðkþ 1Þ;
if x0jðkþ 1Þ 6¼ xjðkþ 1Þ then

Fi;kþ1 ¼ j;
end

end
end

Remark 2. When the network is well connected, the verifica-
tion process will introduce heavy computational overhead.
For example, if the network topology is a complete graph,
even with a verification probability p, the computational
cost for each agent isOðpn3Þ in each iteration. However, the
agents may use a subgraph of the well-connected network
topology as their logical network graph to run the algo-
rithm. As long as the logical network graph is connected,
our algorithmwill converge. In this case, the computational
cost for one agent in each iteration will be reduced to
Oðpd02nÞ, where d0 is its degree in the logical network graph.
For example, in our simulations, we use an Erdo��s-R�enyi
(ER) random graph Gðn; lnnn Þ, in which the average node
degree is lnn. In this case, on average, the computational
cost for each agent in a single iteration isOðpnðlnnÞ2Þ:

When amalicious agent i injects an unfaithful intermediate
result, each of its di neighborswill verify its updatewith prob-
ability p. The probability that malicious agent i successfully
injects a single unfaithful intermediate result without being
identified by its neighbors is P1 ¼ ð1� pÞdi . By Theorem 1,
injecting a finite number of unfaithful intermediate results
will not affect the final solution, so themalicious agent should
inject unfaithful intermediate results from time to time in
order to diverge the algorithm. The probability that malicious
agent i successfully injects m unfaithful intermediate results
without being caught is Pm ¼ ðð1� pÞdiÞm, which decreases
exponentially in m. As m goes to infinity, such a malicious
agentwill be detected by its neighbors almost surely.

4.5 Main Scheme

In the above, we have developed three important compo-
nents for secure LAE outsourcing. Here we integrate the
components into a complete secure LAE outsourcing system
consisting three stages.

� Setup Stage: In this very first phase, the client generates
the secure key and disguises the problem using the
proposed algorithm in Section 4.3. After the problem
disguising phase, the client distributes transformed
problem parameters A0 and b0 to corresponding
agents according to the following rule: to agent i, the

client distributesA
0T
i ; b0i, and fA0T

j ; b0jj8j 2 N ig.
� Distributed Computation Stage: At iteration 0, each

agent i picks one initial solution xið0Þ randomly. At
iteration kþ 1; k 	 0, agent i performs the coopera-
tive verification algorithm Algorithm 1, updates its
consensus value xiðkþ 1Þ by (4), and then finishes
iteration kþ 1 by broadcasting the updating message
Fiðkþ 1Þ to its neighbors. Agent i will terminate the
consensus process if

max
j2N i

kxi � xjk1 � " (10)

holds for consecutive 2L step, where k � k1 repre-
sents the infinity-norm of a vector and L is the diam-
eter of the underlying network graph.

� Final Solution Stage: The distributed average consensus
algorithm will achieve a final convergent point �x,
which is the solution of the transformed problem, i.e.,
y� ¼ �x. The client can then transform the solution to
that of the original problem by computing x� ¼
Q0

mQ
0
pQ

0
t1
� � �Q0

tK0 y
� � Dx, referring to Section 4.3.

5 PERFORMANCE ANALYSIS

5.1 Convergence Analysis

With the distributed consensus-based algorithm, each agent
updates its local solution by utilizing the information from its
neighbors. A critical issue in the algorithm design is the con-
vergence performance. The local solutions of all the agents
need to not only reach a consensus but also converge to the
exact solution of the LAE problem. Furthermore, a fast con-
vergence rate is preferred. Without false update, our revised
robust consensus-based algorithm yields the same local solu-
tions as the original algorithm, whose correctness has been
proved in [12]. According to Theorem 1, our algorithm is
able to tolerate finite number of false updates. Besides, the

422 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

monitoring scheme would prevent malicious agents from
sabotaging the consensus process continuously. Therefore,
local solutions in our algorithm can eventually converge to
the exact solution of the LAE problem. Here, we provide
some insights on the convergence rate of our scheme.

Let x� be the exact solution of the LAE. For ease of pre-
sentation, we conduct analysis based on the updating pro-
cess xiðtþ 1Þ ¼ PAT

i
xiðtÞ þ �xiðtÞ � PAT

i
�xiðtÞ. Suppose that

the local solution at agent i, after kþ 1 iterations, deviate

from x� with a value of eiðkþ 1Þ. Since PAT
i
þ Pi ¼ I accord-

ing to (2), we have

eiðkþ 1Þ ¼ xiðkþ 1Þ � x�

¼ PAT
i
xiðkÞ þ Pi

P
j2N i

xjðkÞ
di

� ðPAT
i
þ PiÞx�

¼ AiA
T
i

AT
i Ai

ðxiðkÞ � x�Þ þ Pi

P
j2N i

xjðkÞ
di

� Pix
�

¼ AT
i ðxiðkÞ � x�Þ

AT
i Ai

Ai þ Pi

P
j2N i

xjðkÞ
di

� Pix
�

¼ bi � bi

AT
i Ai

Ai þ Pi

P
j2N i

ðxjðkÞ � x�Þ
di

¼ Pi

P
j2N i

ejðkÞ
di

:

(11)

Let D be the adjacency matrix corresponding to the underly-

ing graph of the network and H ¼ diagð 1
d1
; . . . ; 1

dn
ÞD. Let

cðkþ 1Þ ¼ ½eT1 ðkþ 1Þ; eT2 ðkþ 1Þ; . . . ; eTn ðkþ 1Þ�T be the devia-

tion of all agents after kþ 1 iterations. Then, according to (11),

cðkþ 1Þ ¼ PGcðkÞ; (12)

where

P ¼
P1 � � � 0

..

. . .
. ..

.

0 � � � Pn

0
B@

1
CA; G ¼ H
 I;

with
 denoting the Kronecker product. P 2 Rn2�n2 is a
block diagonal matrix which is determined by the matrix A

in the LAE problem, while G 2 Rn2�n2 is determined by the

connectivity of the network.
For a square matrix M, let rðMÞ denote its spectral

radius, i.e., the maximum modulus of all its eigenvalues.
Since every Pi is a projection matrix, rðPiÞ ¼ 1 holds for all
i, and hence rðPÞ ¼ 1. It is easy to see that H is a stochastic
matrix. Therefore, G is also a stochastic matrix and
rðGÞ ¼ 1. According to (12), the convergence rate of our
scheme is bounded above by the spectral radius of the itera-
tion matrix rðPGÞ. With connected network topology and
nonsingular A, it is proved in [12] that all local solutions
would converge to the exact solution exponentially fast,
indicating rðPGÞ < 1 such that limk!1ðPGÞk ¼ 0.

Based on aforementioned analysis, two factors affect the
convergence rate of our algorithm. The first one is the condi-
tion number of the matrix A, which characterizes how inac-
curate the solution will be after approximation. The work in
[35] investigates the influence of a matrix condition number
on the convergence rate of iterative methods such as Jacobi
method and Gauss-Seidel method. Let x̂ denote the local
solution such that Ax̂ ¼ b̂. If the condition number of A is

large, the deviation between x̂ and x� would be large even if
b̂ is close to b. Thus, an ill-conditioned A, albeit nonsingu-
lar, can yield a poor convergence rate, meaning that rðPGÞ
is very close to 1. In order to improve the convergence rate,
several preconditioning techniques have been proposed to
transform A with respect to different iterative methods [36],
[37], [38]. Certain types of matrices, such as diagonally dom-
inant matrices, could achieve a good convergence rate as
indicated in on our simulations. In this work, we focus on
the security aspect of the LAE outsourcing problem, analyz-
ing which types of matrices are suitable to our consensus
based algorithm or studying the preconditioning techniques
for that algorithm is out of scope of this work. Therefore, we
employ diagonally dominant matrices to conduct the simu-
lations. The other factor affecting the convergence rate is
the connectivity of the network graph. The relationship
between the convergence rate and the adjacency of the net-
work will be discussed later, where we present some
numerical results concerning the impact of connectivity on
the total computation time of one agent.

5.2 Security Analysis

5.2.1 Privacy Preserving

Note that the transformation keys Dx, Qm, Q
0
m, Qp, Q

0
p and

fQt1
; . . . ;QtK

g; fQ0
t1
; . . . ;Q0

tK0 g are kept local with the cli-
ent throughout the updating process. The only information
that a malicious agent i could obtain is ½A0T

i b0i�, ½A0T
j b0j�, for

some or all j 2 N i, and the solution y� of the transformed
problem. Considering that the network may be completely
connected, let’s assume an adversary obtains A0, b0, and the
solution to the disguised problem y�.

We first consider the output privacy, x� ¼ Q0
mQ

0
pQ

0
t1
� � �

Q0
tK0 y

� � Dx. As Dx is a random n-dimensional vector, the

possible attack strategy for an adversary is statistical attack,
which takes the advantage of the distribution information
of Dx to approximate the solution x�. In our disguising
scheme, since x� is also masked by the series of elementary
operations, each element in the masked x� is a linear combi-
nation (with random weights) of all elements in x�, hence
protecting x� against statistical attack. In other words, no
information of x� can be obtained by the adversary. Simi-
larly, an adversary cannot learn b. With respect to A, due to
both elementary row and column transformations, each ele-
ment is also a random combination of all elements. Without
the knowledge of those elementary operations, an adversary
cannot determine A. However, since the elementary opera-
tions do not change invertibility and dimension of the input
matrix, our scheme is not indistinguishable under chosen-
plaintext attack (IND-CPA). Since all non-singular matrices
of the same size are equivalent under elementary transfor-
mations, the client can improve the security level of the dis-
guising scheme by increasing K and K0. However, to
guarantee Oðn2Þ local computation complexity, both K and
K0 must be bounded above by OðnÞ.

5.2.2 Misbehavior Detection

A malicious agent trying to sabotage the algorithm continu-
ously will almost surely be detected. Now we consider the
situation that a malicious agent broadcasts a false alarm
message Fði;kÞ ¼ j accusing an honest agent j for updating a

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 423

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

false value at iteration k. Suppose there is a common neigh-
boring agent of agent i and j. Upon receiving this false
alarm at iteration kþ 1, this common neighbor verifies
FjðkÞ with probability 1 and finds that FjðkÞ is actually cor-
rect. In other words, with honest common neighbors, the
malicious agent has no way to cheat others by sending false
alarm messages. Since malicious agents are assumed not
colluding, the probability that two fake alarms on the same
integrity agent in one iteration is negligible. In summary,
we have the following deductions: malicious behavior that
can sabotage the algorithm can be detected by probability
infinitely close to 1; the probability that falsely detecting an
integrity agent as a malicious one is negligible.

5.3 Computation Complexity Analysis

Low computation complexity is one of our design goals. For
one thing, due to lack of computation resource, an individ-
ual agent may not afford time-consuming computation. For
another, if the total time cost is much longer than that by
solving the LAE problem locally, the client would also be
reluctant to outsource the problem. The following theorem
gives the total computation complexity for the client and
participatory agents throughout the outsourcing process.

Theorem 2. Through the secure outsourcing process, the local
computation complexity for the client is Oðn2Þ; the average
computation complexity for each agent is Oðlðdpþ 1ÞdnÞ,
where l is the number of iterations to reach the consensus and d
is the average degree of the network graph.

Proof. For the client, the only computation burden stems
from the problem disguising and solution recovery. By
Lemma 2, the disguising computation complexity is
Oðn2Þ. For recovering the solution, the client computes
x� ¼ Q0

mQ
0
pQ

0
t1
� � �Q0

tK0 y
� � Dxwhich incurs complexity

OðnÞ. Thus, the total computation complexity for the

client is Oðn2Þ.
For each agent, it performs two tasks at each itera-

tion—updating its local solution and probabilistically
monitors its neighbors. Checking the message from
neighbors has the same time complexity as updating its
solution which is OðdinÞ by Lemma 1. Thus, the expected
complexity within one iteration for an agent is
Oððdpþ 1ÞdinÞ and the total average complexity for each
agent can be given asOðlðdpþ 1ÞdnÞ. tu
Based on Theorem 2, the average computation complexity

for each agent is related to the network graph and number of
steps to reach consensus.When d � n, the computation com-
plexity for each agent approximates toOðlnÞ. Through exten-
sive simulations, we notice that for a diagonally dominantA,
the convergent step is roughly bounded byOðnÞ, resulting in
that the average complexity for each agent is less than Oðn2Þ
which is one-order lower than the computation complexity
of solving the LAE problem directly.

5.4 Communication Complexity Analysis

The main communication burden for the client is to distrib-
ute the disguised problem. As A0T

i and b0i are distributed not
only to agent i, but also to its neighbor agents, on average,
the client needs to send dþ 1 copies of disguised LAE prob-
lem, incurring Oðdn2Þ communication overhead.

For simplicity, we use the amount of data exchanged
between agents to characterize the communication complex-
ity for each agent, regardless of the scheduling protocol. At
each iteration, agent i broadcasts message Fi. To update its
local solution, it also needs to receive di messages from its
neighbors. Since each message contains the current solution
of an agent and local solutions of its neighbors in the previous
round, the average size of one message isOðdnÞ. On average,
an agent needs to send and receive totally dþ 1 messages.
Therefore, the average total communication complexity for
each agent can be given asOðlðdþ 1ÞdnÞ ¼ Oðld2nÞ.

6 NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed scheme in terms of both effi-
ciency and robustness. We employ a PC with Intel Core 2
Quad CPU of 2.34 GHz and 4 GB memory to run the prob-
lem disguising process at the client. The consensus-based
LAE solving process is performed by memory optimized
instance (r3.2xlarge) on Amazon Elastic Computing Cloud
(EC2). The virtual core of the employed instance is equiva-
lent to an Intel Xeon E5-2670 v2 processor, whose running
frequency is comparable to common desktops or mobile
devices. We also develop simulation codes using Python
with the NumPy package extension.

6.1 Convergence Performance

Similar as in [13], we generate random diagonally dominant
matrices to construct the LAE. We use an Erdo��s-R�enyi (ER)
random graph Gðn; qÞ [39] to model the connectivity of the
cloud agents. According to the analysis in Section 5.1, the con-
nectivity of the underlying graph affects the convergence rate
of our algorithm. Intuitively, the convergence can be reached
at a faster speed under a graphwith better connectivity. How-
ever, the computation complexity per iteration for an agent is
OðdinÞ, which implies that a lower average degree can bring
benefit in terms of computation time. Fig. 3 illustrates the
trade-off between the time complexity per iteration and con-
vergence time under different graph connectivity. To guaran-
tee the connectedness of the network topology, we use the
union of an n-agent cycle and the ER graph generated by
Gðn; qÞ model as the network graph. In an extreme case, the
underlying graph is a cycle with average degree 2 when the

Fig. 3. Total computation time per agent and number of convergence
steps versus probability of the ER graph.

424 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

probability q equals to 0. Fig. 3 shows the relationship
between the connectivity probability q and the total running
time (equivalently the number of convergence steps) for each
agent in a 1,000-agent network.

As shown in Fig. 3, although the number of convergence
steps decreases as the network connectivity increases, the
total running time for each agent is dominated by the time
complexity per iteration. This is due to the fact as in Theorem
2 that the computation time grows in the order of
Oðlðdpþ 1ÞdnÞ, which isOðd2Þ of the average network degree
d but OðlÞ of the number of convergence steps l. The results
also show that the number of convergence steps decreases
exponentially as the connectivity improves. When the proba-
bility q > 0:1, only marginal reduction of convergence steps
can be achieved. Since the average degree of the underlying
graph d � nq, the time complexity per iteration reduces line-
arly when q decreases. Especially, as compared to a cyclic
topology (i.e., q ¼ 0), the computation time can be lowered by
adding shortcuts to the cycle. This is because such a topology
could benefit from the dramatical reduction of convergence
steps. In the following simulations, we set q ¼ lnn

n , which is
the sharp threshold for the connectedness of Gðn; qÞ and cor-
responds to a relative sparse topology [39].

The computation cost of our scheme with respect to the
LAE problem dimension n is given in Table 1. To illustrate
the efficiency of our scheme, we also locally solve the same
problem using the existing Jacobi method [40]. For problem
disguising, we set the amount of row and column addition
operations equal to the problem size, i.e., K ¼ K0 ¼ n. As
shown in the table, for the problem of size n ¼ 10; 000, the
problem disguising algorithm only takes less than 8 sec-
onds. Moreover, for solving the LAE, approximately 2.5
hours are needed by the Jacobi method, while in contrast
the computation time required by each agent using the pro-
posed consensus-based algorithm is less than 7 seconds.
With respect to the memory occupation, each agent needs to
store a couple of 10; 000� 1 vectors. Each vector, of size
10; 000� 8 Bytes � 80 KB, is significantly shorter than the
memory usage by the local Jacobi method which requires at
least 10; 0002 � 8 Bytes � 800 M.

6.2 Security Performance

We adopt the following two metrics to evaluate the security
performance of the proposed scheme—root mean square
error (RMSE) and mean standard deviation (MSD):

RMSE ¼ 1

n

Xn
i¼1

kxiðtÞ � x�k; (13)

MSD ¼ 1

n
kxSDk1; (14)

where k � k1 represents the l1-norm of a vector; xSD is the
standard deviation vector with every component being the

standard deviation of the value in the corresponding com-
ponent of all local solutions. RMSE and MSD characterize
the error between all local solutions and the exact solution.

As discussed in Section 3, without our robust algorithm,
a malicious agent can manipulate the final results with a
one-time false update. This phenomenon is illustrated in
Fig. 4, where a 500-agent ad hoc cloud is used in the simula-
tions. At the 500th iteration, a malicious agent injects a false
update (see the spike at iteration 500 in Fig. 4a). In presence
of the malicious agent, final consensus can be reached as
shown in Fig. 4a. However, the RMSE as shown in Fig. 4b
indicates that the algorithm eventually converges to an
incorrect solution.

When the proposed robust consensus-based algorithm is
implemented, we apply the same attack at 100th, 300th and
500th iterations. Fig. 5 shows that these three false updates do
not mislead normal agents to an incorrect solution. Since each
agent’s next update is only determined by the current updates
of its neighbors, the false update can only influence the next
update of the malicious agent’s own neighbors. However, as
illustrated in Fig. 5b, these attacks impose little impact on the
convergence process. Despite some impulses, all the agents
are on the right course of agreeing on the final solution. This is
because that these impacts will be averaged out by the correct
updates of honest agents and thus decay as time goes.

TABLE 1
Computation Overhead

Problem size n 1,000 2,000 3,000 4,000 5,000 8,000 10,000

Local Jacobi Method [40] 10 secs 78 secs 250 secs 10 mins 19 mins 78 mins 151 mins
Problem Disguising (our method) 0.066 sec 0.263 sec 0.599 sec 1.089 secs 1.739 secs 4.395 secs 7.225 secs
Problem Solving (our method) 0.28 sec 0.78 sec 1.33 secs 1.93 secs 2.57 secs 4.90 secs 6.84 secs

Fig. 4. The effect of results manipulating attack when without our robust
algorithm.

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 425

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

We evaluate the performance of our misbehavior detection
scheme with a 1000-agent ad hoc cloud. For simplicity, we
employ a complete graph as the network topology of these
1,000 agents. The results shown in Fig. 6 are averaged over
5,000 independent runs. For each agent, the number of mali-
cious agents in its neighborhood is bounded above by a frac-
tion f 2 ð0; 1Þ. Each malicious agent updates a false result at
each iteration. A malicious agent is considered to be detected
if there are at least f-fraction of its neighbor agents claiming
its misbehavior. For example, when f ¼ 0:1, we say a mali-
cious agent has been detected if more than 10 percent of
agents in its neighborhood have discovered its misbehaviors.
The percentage of detected malicious agents under different
fraction models is illustrated in Fig. 6a, where the detection
probability is fixed at 0.04.When f ¼ 0:1, almost all malicious
agents would be detected if they conduct more than 20 times
of attack. Fig. 6b shows the percentage of detected malicious
agents under different detection probabilities, where the frac-
tion ofmalicious node is fixed at 0.1.When the detection prob-
ability p 	 0:02, more than 80 percent malicious agents would
be detected if they conduct more than 10 false updates. For a
higher detection probability, e.g., p ¼ 0:03 and p ¼ 0:04,
almost no malicious agent is able to conduct more than 18
times of attack before being detected.

6.3 Performance under WiFi Based Ad Hoc Clouds

In this section, we develop C++ codes within the OMNeT++
discrete event simulation environment to evaluate the per-
formance of the proposed algorithm in a WiFi based wire-
less ad hoc cloud. We consider that 100 cloud agents are
uniformly distributed in a 500m� 500m square area. The
wireless communications among the agents are carried out
based on the IEEE 802.11g standard over the 2.4 GHz

channel and with CSMA/CA protocol as the MAC layer
protocol. The agents have the same transmit power of
13 dBm and the SINR threshold for successfully decoding a
message is 4 dB. The default values for the CSMA/CA pro-
tocol parameters are used. In order to run our algorithm in
a synchronous manner (to cater for the discrete-time con-
sensus-based algorithm), the time is equally divided into
updating windows with each window having the same
length. During each window, each agent randomly chooses
a time to start the CSMA/CA based contention and only
broadcasts its local solution when it succeeds in the conten-
tion. Each agent can update the average value �xiðtÞ upon
receiving a local solution from one of its neighbors. At the
end of an updating window, each agent calculates its local
solution based on the up-to-date �xiðtÞ. A message may get
lost due to collision in the contention process. Also, due to
channel access delay, if a message arrives beyond the cur-
rent window, it will be dropped and is considered as a
packet loss. This local solution is then stored in the corre-
sponding agent until broadcasted in the next window.

The performance of our consensus-based algorithm with
packet loss is illustrated in Fig. 7. The solid line character-
izes the relationship between the number of iterations

Fig. 5. The effect of results manipulating attack when with our robust
algorithm.

Fig. 6. Performance of the misbehavior detection scheme.

426 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

required for convergence and the dimension of the LAE
problem. The dotted line represents the results under the
same network topology but without packet loss. The
scheme described in 4.2 is used when the dimension of the
problem is larger than the number of agents, in which case
we assign each agent the same number of rows. We focus
on LAE problems with A as a diagonally dominant matrix.
Fig. 7 indicates that the convergence steps approximates to
OðnÞ. In addition, compared to the performance when with-
out packet loss, the case with packet loss shows that only a
small number of extra iterations is needed to reach consen-
sus, which suggests that the packet loss has no much impact
on the consensus process in the simulated scenarios.

6.4 Performance Under LAN Testbed

Through row switching, a diagonally dominant matrix can
be transformed to a matrix to which Jacobi method is not
applicable. For example, a matrix which does not satisfy the
convergence condition of Jacobi method can be constructed
by shifting the rows of a diagonally dominant matrix circu-
larly (i.e., the ith row is moved to the ði� 1Þth row while
the 1st row is moved to the last). In this section, we show
that our proposed algorithm works properly on matrices to
which Jacobi method is not applicable, e.g., matrices with
the aforementioned structure. We establish a LAN which
consists of 5 computers to run the multiple-rows-per-agent
version of our proposed algorithm. All computers are
linked to a central hub. An LAE problem of size 5,000 �
5,000 is solved collaboratively by these computers. The total
5,000 rows are distributed evenly to the computers. At each
iteration, each computer broadcasts the average of 1,000
local solutions, which is a 5,000-dimension vector. As the
number of iterations increases, these vectors will converge
to the exact solution of the LAE problem. To illustrate the
consensus behavior of these 5 machines, we use the normal-
ized error (normalized deviation from the exact solution) of
one dimension of the solution and plot the consensus traces
in Fig. 8. As shown in Fig. 8, the normalized errors diminish
to zero as the number of iteration increases.

7 DISCUSSIONS

7.1 Hiding Dimension of the LAE Problem

In order to fully hide the problem dimension, the client
needs to have the capability to outsource a modified LAE

with a different dimension and recover the right solution of
the original LAE from the returned solution of the modified
LAE. For example, to increase the size of the outsourced
problem, the client can first augment the original problem
by introducing a random r� r non-singular matrix S and
an r-dimensional random vector z and obtain a modified
LAE as follows:

A 0
0 S

� �
x
z

� �
¼ b

Sz

� �
;

where r is a random integer. With this augmented problem,
the client employs the disguising scheme to mask the prob-
lem and then outsources the disguised problem to the ad
hoc cloud.

On the other hand, solving LAE problem through out-
sourcing another (or multiple) computation problem with a
smaller dimension is a challenging issue in the distributed
context. The work in [21] proposed a method to partition A,
which enables the client to solve A�1 by outsourcing several
matrix inversion problems with dimensions smaller than n.
As the LAE problem Ax ¼ b can be solved by computing
inversion of A if A is non-singular, the partition method in
[21] can be directly applied to decrease the dimension of the
original LAE problem. To make such method applicable in
the scenario of ad hoc cloud, distributed schemes for
securely outsourcing matrix inversion and multiplication
problem are required. We leave this to our future work.

7.2 Detecting Collusion Attack

So far, we have assumed that malicious agents do not col-
lude. However, in some cases this assumption may not
apply. For example, a powerful malicious agent may be
able to hack one or multiple of its neighbors and take con-
trol of their computation and/or communications. In this
section, we discuss possible extensions of our misbehavior
detection scheme to deal with collusion attacks.

7.2.1 Collusion Attack Model

For ease of exposition, we use examples to illustrate how
two adjacent malicious agents collude and sabotage the con-
sensus-based algorithm. As shown in Fig. 9a, assume that
agents 1 and 2 are malicious ones while agent 3 is an honest
one. We are to show that the two malicious agents, if they

Fig. 7. Performance of consensus-based algorithm with packet loss.
Fig. 8. Consensus traces.

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 427

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

collude, can escape the above proposed misbehavior detec-
tion scheme. At some iteration k, agent 2 broadcasts a cor-
rect update x2ðkÞ to its neighbors, while unicasts an
incorrect update x02ðkÞ 6¼ x2ðkÞ to agent 1. Since they collude,
agent 1 will move on to use x02ðkÞ to compute its x1ðkþ 1Þ in
the next iteration without reporting misbehavior of agent 2.
The incorrectness of x1ðkþ 1Þ cannot be detected by agent 3,
since agent 1 exactly follows the updating equation (4).
Since agent 3 is unaware of the misbehavior of agent 2 and
if agent 1 colludes with 2, agent 3 is unable to accuse agent
1. If agent 2 is not caught by its neighbors, it can continu-
ously inject bad data to disturb the consensus process and
finally cause the algorithm diverge or converge to a wrong
value. Note that this type of attack cannot be done by agent
1 alone, because every message is digitally signed by the
generating agent, and the attempt for agent 1 to forge an
x02ðkÞwill be detected by agent 3.

7.2.2 Collusion Attack Detection

For an agent to be able to detect the above attack, it has to be
the common neighbor of a two colluding agents. For exam-
ple, as shown in Fig. 9b, if agent 3 is the common neighbor
of the colluding agents 1 and 2, it is able to find out that the
incorrect x02ðkÞ contained in F1ðkþ 1Þ does not match x2ðkÞ
contained in the message F2ðkÞ. Since messages are signed
as mentioned above, agent 3 will notice that agent 1 for-
wards a wrong message without reporting misbehavior and
agent 2 sends wrong messages, thus identifies that the two
agents are colluding.

The collusion attack can only be detected by the common
neighbor of these colluding agents; however, the common
neighbors of a colluding pair can also be malicious ones. To
be able to deal with this issue, the network topology has to
satisfy that among the common neighbors of a colluding
pair, the number of honest agents is larger than the number
of malicious ones. We leave the detailed design of a collu-
sion tolerance outsourcing scheme as our future work.

8 CONCLUSION

In this paper, we have proposed a secure outsourcing
scheme for solving LAE problems in ad hoc clouds, which
comprises of a robust distributed average consensus-based
algorithm, a privacy preserving problem disguising tech-
nique, and a cooperative verification mechanism. The pro-
posed scheme can protect the private information contained
in the LAE problem parameters and solutions, and

guarantee the correctness of the final solution. Performance
analysis and numerical results have been provided to dem-
onstrate that the proposed scheme is efficient in terms of
computation complexity, and robust against a variety of
malicious behaviors. For the future work, we will study the
detection and mitigation mechanics for collusion attack,
and how to further reduce the communication overhead of
the proposed scheme.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Sci-
ence Foundation under grants CNS-1117687 and CNS-
1320736, the National Natural Science Foundation of China
under grant 61573103, and State Key Laboratory of Syntheti-
cal Automation for Process Industries of China.

REFERENCES

[1] M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[2] M. Conti and S. Giordano, “Mobile ad hoc networking: Mile-
stones, challenges, and new research directions,” IEEE Commun.
Mag., vol. 52, no. 1, pp. 85–96, Jan. 2014.

[3] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
bringing the cloud to the mobile user,” in Proc. 3rd ACMWorkshop
Mobile Cloud Comput. Services, 2012, pp. 29–36.

[4] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: Architecture and service modes,”
IEEE Commun. Mag., vol. 53, no. 6, pp. 18–24, Jan. 2015.

[5] F. Chi, X. Wang, W. Cai, and V. C. Leung, “Ad-hoc cloudlet based
cooperative cloud gaming,” IEEE Early Access Article, 2016.
[Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7322203

[6] Y. Gong, C. Zhang, Y. Fang, and J. Sun, “Protecting location pri-
vacy for task allocation in ad hoc mobile cloud computing,” IEEE
Trans. Emerging Topics Comput., 2016. IEEE Early Access Article,
[Online]. Available: http://ieeexplore.ieee.org/stamp.jsp?
tp=&arnumber=7296638

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. Annu. ACM Symp. Theory Comput., 2009, pp. 169–169.

[8] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully
homomorphic encryption over the integers,” in Public-Key Cryp-
tography, Berlin, Germany: Springer, 2014, pp. 311–328.

[9] S. Fau, R. Sirdey, C. Fontaine, C. Aguilar-Melchor, and G. Gogniat,
“Towards practical program execution over fully homomorphic
encryption schemes,” in Proc. 8th Int. Conf. P2P, Parallel, Grid,
Cloud Internet Comput., 2013, pp. 284–290.

[10] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in Proc. IEEE Symp.
Secur. Privacy, 2013, pp. 238–252.

[11] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifiable compu-
tation on encrypted data,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 844–855.

[12] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solv-
ing a linear algebraic equation,” IEEE Trans. Autom. Control,
vol. 60, no. 11, pp. 2863–2878, Nov. 2015.

[13] C. Wang, K. Ren, J. Wang, and K. M. R. Urs, “Harnessing the
cloud for securely solving large-scale systems of linear equa-
tions,” in Proc. IEEE ICDCS, 2011, pp. 549–558.

[14] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. IEEE INFO-
COM, 2011, pp. 820–828.

[15] M. J. Atallah and J. Li, “Secure outsourcing of sequence
comparisons,” Int. J. Inform. Securi., vol. 4, no. 4, pp. 277–287, 2005.

[16] M. Blanton and M. Aliasgari, “Secure outsourcing of DNA search-
ing via finite automata,” in Data and Applications Security and Pri-
vacy XXIV. Berlin, Germany: Springer, 2010, pp. 49–64.

[17] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear alge-
bra computations,” in Proc. ACM Symp. Inform., Comput. Commun.
Secur., 2010, pp. 48–59.

[18] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

Fig. 9. Collusion attack and its detection.

428 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7322203
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7322203
http://ieeexplore.ieee.org/stamp.jsp?tp=&arnumber=7296638
http://ieeexplore.ieee.org/stamp.jsp?tp=&arnumber=7296638

[19] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large
matrix inversion computation to a public cloud,” IEEE Trans.
Cloud Comput., vol. 1, no. 1, pp. 1–1, Jan.-Jun. 2013.

[20] X. Lei, X. Liao, T. Huang, and H. Li, “Cloud computing service:
The caseof large matrix determinant computation,” IEEE Trans.
Serv. Comput., vol. 8, no. 5, pp. 688–700, Sep.-Oct. 2015.

[21] M. J. Atallah, K. Pantazopoulos, J. R. Rice, and E. E. Spafford,
“Secure outsourcing of scientific computations,” Adv. Comput.,
vol. 54, pp. 215–272, 2002.

[22] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing
of large-scale linear systems of equations,” in Proc. IEEE INFO-
COM, Apr. 2015, pp. 1035–1043.

[23] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. Wong, “New algo-
rithms for secure outsourcing of large-scale systems of linear
equations,” IEEE Trans. Inform. Forensics Secur., vol. 10, no. 1,
pp. 69–78, Jan. 2015.

[24] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algo-
rithm with exponential convergence,” J. Fourier Anal. Appl.,
vol. 15, no. 2, pp. 262–278, 2009.

[25] A. Margaris, “Parallel implementation of the Jacobi linear alge-
braic system solver,” in Proc. 3rd Balkan Conf. Informat., 2007,
pp. 161–172.

[26] J. He, J. Chen, P. Chen, and X. Cao, “Secure time synchronization
in wireless sensor networks: A maximum consensus based
approach,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 4,
pp. 1055–1065, Apr. 2014.

[27] Z. Zhang and M.-Y. Chow, “Convergence analysis of the incre-
mental cost consensus algorithm under different communication
network topologies in a smart grid,” IEEE Trans. Power Syst.,
vol. 27, no. 4, pp. 1761–1768, Nov. 2012.

[28] M. Fiore, C. E. Casetti, C.-F. Chiasserini, and P. Papadimitratos,
“Discovery and verification of neighbor positions in mobile ad
hoc networks,” IEEE Trans. Mobile Comput., vol. 12, no. 2, pp. 289–
303, Feb. 2013.

[29] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram,
“Resilient asymptotic consensus in robust networks,” IEEE J. Sel.
Areas Commun., vol. 31, no. 4, pp. 766–781, Apr. 2013.

[30] S. M. Dibaji and H. Ishii, “Consensus of second-order multi-agent
systems in the presence of locally bounded faults,” Syst. Control
Lett., vol. 79, pp. 23–29, 2015.

[31] H. Tang, F. R. Yu, M. Huang, and Z. Li, “Distributed consensus-
based security mechanisms in cognitive radio mobile ad hoc
networks,” IET Commun., vol. 6, no. 8, pp. 974–983, 2012.

[32] M. Kefayati, M. S. Talebi, B. H. Khalaj, and H. R. Rabiee, “Secure
consensus averaging in sensor networks using random offsets,” in
Proc. IEEE Int. Conf. Telecommun. Malaysia Int. Conf. Commun.,
2007, pp. 556–560.

[33] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion
detection for secure consensus computations,” in 46th IEEE Conf.
Decision Control, 2007, pp. 5594–5599.

[34] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” ACM
Trans. Algorithms, vol. 1, no. 1, pp. 2–13, 2005.

[35] A. Pyzara, B. Bylina, and J. Bylina, “The influence of a matrix con-
dition number on iterative methods’ convergence,” in Proc. IEEE
Federated Conf. Comput. Sci. Inform. Syst., 2011, pp. 459–464.

[36] K. Chen, Matrix Preconditioning Techniques and Applications. Cam-
bridge, U.K.: Cambridge Univ. Press, 2005.

[37] M. J. Grote and T. Huckle, “Parallel preconditioning with sparse
approximate inverses,” SIAM J. Scientific Comput., vol. 18, no. 3,
pp. 838–853, 1997.

[38] M. Benzi, “Preconditioning techniques for large linear systems: a
survey,” J. Comput. Phys., vol. 182, no. 2, pp. 418–477, 2002.

[39] P. Erdo��s and A. R�enyi, “On the evolution of random graphs,” Pub-
lications Math. Inst. Hungarian Academy Sci., vol. 5, no. 1, pp. 17–61,
1960.

[40] Y. Saad, Iterative Methods for Sparse Linear Systems. New Delhi,
India: SIAM, 2003.

Wenlong Shen (IEEE S’13) received the BE
degree in electrical engineering from Beihang
University, Beijing, China, in 2010, and the MS
degree in Telecommunications from University of
Maryland, College Park, Maryland, in 2012. He is
currently working toward the PhD degree in the
Department of Electrical and Computer Engineer-
ing, Illinois Institute of Technology, Chicago, Illi-
nois. His research interests include vehicular ad
hoc networks, mobile cloud computing, and net-
work security.

Bo Yin (IEEE S’15) received the BEng and MEng
degrees respectively in 2010 and 2013 from
School of Electronic Information Engineering,
Beihang University, China. Currently, he is work-
ing toward the PhD degree in the Department of
Electrical and Computer Engineering, Illinois
Institute of Technology. His research interests
include mobile cloud computing and network
security.

Xianghui Cao (IEEE S’08-M’11-SM’16) received
the BS and PhD degrees in control science and
engineering from Zhejiang University, Hangzhou,
China, in 2006 and 2011, respectively. From
December 2007 to June 2009, he was a visiting
scholar in the Department of Computer Science,
The University of Alabama, Tuscaloosa, Ala-
bama. From July 2012 to July 2015, he was a
senior research associate in the Department of
Electrical and Computer Engineering, Illinois
Institute of Technology, Chicago, Illinois. Cur-

rently he is an associate professor with School of Automation, Southeast
University, Nanjing, China. His research interests include cyber-physical
systems, wireless network performance analysis, wireless networked
control and network security. He serves as Publicity Co-chair for ACM
MobiHoc 2015, Symposium Co-chair for ICNC 2017 and IEEE/CIC
ICCC 2015, and TPC member for a number of conferences. He also
serves as an associate editor of several journals, including the KSII
Transactions on Internet and Information Systems, the Security and
Communication Networks and International Journal of Ad Hoc and Ubiq-
uitous Computing. He was a recipient of the Best Paper Runner-Up
Award from ACMMobiHoc 2014.

SHEN ET AL.: A DISTRIBUTED SECURE OUTSOURCING SCHEME FOR SOLVING LINEAR ALGEBRAIC EQUATIONS IN AD HOC CLOUDS 429

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

Yu Cheng (IEEE S’01-M’04-SM’09) received the
BE and ME degrees in electronic engineering
from Tsinghua University, Beijing, China, in 1995
and 1998, respectively, and the PhD degree in
electrical and computer engineering from the Uni-
versity of Waterloo, Waterloo, Ontario, Canada,
in 2003. From September 2004 to July 2006, he
was a postdoctoral research fellow in the Depart-
ment of Electrical and Computer Engineering,
University of Toronto, Ontario, Canada. Since
August 2006, he has been with the Department

of Electrical and Computer Engineering, Illinois Institute of Technology,
Chicago, Illinois, where he is now an associate professor. His research
interests include next-generation Internet architectures and manage-
ment, wireless network performance analysis, network security, and
wireless/wireline interworking. He received a Best Paper Award from the
conferences QShine 2007 and IEEE ICC 2011, and the Best Paper Run-
ner-Up Award from ACM MobiHoc 2014. He received the National Sci-
ence Foundation (NSF) CAREER AWARD in 2011 and IIT Sigma Xi
Research Award in the junior faculty division in 2013. He served as a
Co-Chair for the Wireless Networking Symposium of IEEE ICC 2009, a
Co-Chair for the Communications QoS, Reliability, and Modeling Sym-
posium of IEEE GLOBECOM 2011, a Co-Chair for the Signal Process-
ing for Communications Symposium of IEEE ICC 2012, a co-chair for
the Ad Hoc and Sensor Networking Symposium of IEEE GLOBECOM
2013, and a Technical Program Committee (TPC) Co-Chair for WASA
2011, ICNC 2015, and IEEE/CIC ICCC 2015. He is a founding Vice
Chair of the IEEE ComSoc Technical Subcommittee on Green Commu-
nications and Computing. He is an associated editor for IEEE Transac-
tions on Vehicular Technology and the New Books & Multimedia
Column editor for IEEE Network. He is a senior member of the IEEE.

Xuemin (Sherman) Shen (IEEE M’97-SM’02-
F’09) received the BSc (1982) degree from
Dalian Maritime University, China and the MSc
(1987) and PhD degrees (1990) from Rutgers
University, New Jersey, all in electrical engineer-
ing. He is a professor and University Research
Chair, Department of Electrical and Computer
Engineering, University of Waterloo, Canada. He
was the associate chair for Graduate Studies
from 2004 to 2008. His research focuses on
resource management in interconnected wire-

less/wired networks, wireless network security, social networks, smart
grid, and vehicular ad hoc and sensor networks. He is an elected mem-
ber of IEEE ComSoc Board of Governor, and the chair of Distinguished
Lecturers Selection Committee. He served as the Technical Program
Committee chair/co-chair for IEEE Infocom’14, IEEE VTC’10 Fall, the
symposia chair for IEEE ICC’10, the Tutorial Chair for IEEE VTC’11
Spring and IEEE ICC’08, the Technical Program Committee Chair for
IEEE Globecom’07, the General co-chair for ACM Mobihoc’15,
Chinacom’07 and QShine’06, the chair for the IEEE Communications
Society Technical Committee on Wireless Communications, and the
P2P Communications and Networking. He also serves/served as the
editor-in-chief for the IEEE Network, the Peer-to-Peer Networking and
Application, and the IET Communications; a Founding area editor for the
IEEE Transactions on Wireless Communications; an associate editor for
the IEEE Transactions on Vehicular Technology, Computer Networks,
and the ACM/Wireless Networks, etc.; and the guest editor for the IEEE
JSAC, the IEEE Wireless Communications, the IEEE Communications
Magazine, and the ACM Mobile Networks and Applications, etc. He
received the Excellent Graduate Supervision Award in 2006, and the
Outstanding Performance Award in 2004, 2007, 2010, and 2014 from
the University of Waterloo, the Premier’s Research Excellence Award
(PREA) in 2003 from the Province of Ontario, Canada, and the Distin-
guished Performance Award in 2002 and 2007 from the Faculty of Engi-
neering, University of Waterloo. Dr. Shen is a registered Professional
Engineer of Ontario, Canada, an IEEE fellow, an Engineering Institute of
Canada fellow, a Canadian Academy of Engineering Fellow, and a Dis-
tinguished Lecturer of IEEE Vehicular Technology Society and Commu-
nications Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

430 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2019

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on December 02,2021 at 04:14:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

