
2922 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Security Analysis of Mobile Device-to-Device
Network Applications

Kecheng Liu, Student Member, IEEE, Wenlong Shen, Member, IEEE, Yu Cheng , Senior Member, IEEE,

Lin X. Cai, Member, IEEE, Qing Li, Member, IEEE, Sheng Zhou , Member, IEEE,

and Zhisheng Niu , Fellow, IEEE

Abstract—Mobile device-to-device (D2D) network has now
become a standardized feature in many mobile devices, by which
mobile devices can communicate with each other even when com-
mercial Internet access is not available. Because D2D network is
expected to be an intrinsic part of the Internet of Things (IoT)
and mobile device is the smartest and the most advanced com-
mercial device in everyday usage, the D2D feature and related
security protocols it adopts influences the design and implemen-
tation of many other IoT devices. While D2D network provides
tangible benefits to users, it also raises the security risks of
information leaking. This paper presents an in-depth empiri-
cal security analysis on mobile D2D network among Android
devices. Android apps could establish a mobile D2D network
in various ways, including Wi-Fi hotspot, Wi-Fi Direct, and
Bluetooth. Those mobile D2D protocols normally take different
protection mechanisms, which makes security investigation con-
siderably challenging. In this paper, we focus on most popular
apps in the Google Play Store, with aggregated downloads more
than 500 million. Our analysis reveals some critical vulnerabili-
ties. The key findings are bi-fold. First, the current mobile D2D
network framework enabled by Android has significant flaw of
overprivilege issue. Second, we have identified that most data
transfer over mobile D2D network is unencrypted. Furthermore,
we exploit the identified Android framework flaws to construct
three proof-of-concept attacks and we conclude this paper with
security lessons and suggestions of possible solutions against the
identified security issues.

Index Terms—Android, device-to-device (D2D), information
security, Internet of Things (IoT), overprivilege.

I. INTRODUCTION

MOBILE device-to-device (D2D) network provides a
paradigm to facilitate data exchange among physically

Manuscript received March 23, 2018; revised June 24, 2018 and
September 26, 2018; accepted October 11, 2018. Date of publication
October 22, 2018; date of current version May 8, 2019. This work was
supported in part by the NSF under Grant ECCS-1610874, Grant ECCS-
1554576, and Grant CNS-1816908, in part by the National Natural Science
Foundation of China under Grant 61628107, Grant 61861136003, Grant
61571265, Grant 91638204, and Grant 61621091, and in part by the United
Technologies Research Center under Grant A18-0056-001. (Corresponding
author: Yu Cheng.)

K. Liu, W. Shen, Y. Cheng, and L. X. Cai are with the Department
of Electrical and Computer Engineering, Illinois Institute of Technology,
Chicago, IL 60616 USA (e-mail: kliu6@hawk.iit.edu; wshen7@hawk.iit.edu;
cheng@iit.edu; lincai@iit.edu).

Q. Li is with the Network Protection Products Business
Unit, Symantec Cooperation, Mountain View, CA 94043 USA
(e-mail: qing_li@symantec.com).

S. Zhou and Z. Niu are with the Tsinghua National Laboratory for
Information Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: sheng.zhou@tsinghua.edu.cn; niuzhs@tsinghua.edu.cn).

Digital Object Identifier 10.1109/JIOT.2018.2877174

proximate devices. As an alternative network structure to
infrastructure-based network, a mobile D2D network can be
established without the presence of base stations or access
point. Data transfer takes place directly among connected
devices without any interaction with other devices outside the
network [2], [8].

Relying on the infrastructure-based network is not always
the optimum route to transmit and receive data, especially
considering the rapid development of Internet of Things
(IoT). In an IoT ecosystem, devices initiate communications
among themselves. Due to constrained battery life, process-
ing power, memory, and uncertainty in wireless environment,
building an IoT system that solely relies on cloud network
is extremely challenging and impractical. The fundamental
requirement of the IoT is to provide connectivity between
devices. Thus, achieving a seamless end-to-end D2D commu-
nication is imperative for the success of the IoT. The rapid
growth of mobile devices has made an inception of its leading
role in terms of Things (devices). They have been optimized
in all aspects, including power, usability, and networking, and
have become a significant part of the IoT ecosystem. For
both the compatibility and security reasons, many IoT devices
have adapted the D2D network feature from mobile devices
and have followed their design mechanisms [4]. Mobile D2D
network may enable applications over free spectrum, e.g.,
WiFi band, without involving commercial Internet access [18].
D2D network can also be utilized to offload cellular data traf-
fic for new applications, such as data sharing, multiplayer
gaming, and video streaming [9], [24]. In this paper, we
particularly focus on mobile D2D network enabled by Wi-Fi-
based technologies. Such D2D network is infrastructureless,
self-formed networks, and allow free usage without payment
charge. In fact, the post popular mobile D2D network apps
currently available on market are over such WiFi-based D2D
network.

Our group performed, to our best knowledge, the first
security analysis of the mobile D2D network framework on
Android. Specifically, we empirically evaluated the security
design of the most popular smart phone platform for mobile
D2D network on Android. We focused on the framework
of the network driver and the software implementation of
apps because they are the substrates that unify application,
protocols, and devices to realize mobile D2D network benefits.

Our Contributions: We discovered security-critical design
flaws in the following areas.

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4837-3370
https://orcid.org/0000-0003-0651-0071
https://orcid.org/0000-0003-0420-2024

LIU et al.: SECURITY ANALYSIS OF MOBILE D2D NETWORK APPLICATIONS 2923

1) Android D2D network needs implicit configurations to
make sure the network is safe. The open-sourced API
does not present such configuration.

2) Android D2D network framework has significant over-
privilege issues. Granted permission to access Wi-Fi
states, any apps installed on the smart phone could
access the Wi-Fi hotspot feature and the Wi-Fi Direct
feature on the device, even if those features are not
required by that app. As a result, key information,
including password, about the D2D network is exposed,
leaving the network unprotected.

3) Once received the key information about the D2D
network, any device could hack into the network silently
since the network authentication mechanism is evitable.
An attacker could join the D2D network without any
authentication process. The peers in the network may
not even notice.

4) Coarse security implementation of D2D apps leaves data
unencrypted. Attackers could eavesdrop on the network
and steal information.

We exploited an aggregation of framework design flaws to
show various security problems conspired to weaken mobile
D2D network security. We constructed three proof-of-concept
attacks.

1) We exploited an exiting mobile D2D app available on the
app store to snoop network information. Nearby devices
running the same hacking program could silently join
the network.

2) We eavesdropped on the D2D network and once a file
transfer service is initiated, the hacking program can
steal the file.

3) We captured and investigated the unencrypted D2D
network packets on another existing mobile D2D app,
which disclose the key information during a file transfer.

Finally, in our forward looking analysis, we distilled the key
studies to establishing secure mobile D2D network framework.
We couple the lessons with a breakdown of pros and cons
of the tradeoffs in constructing such framework. Our analysis
suggests that most problems are readily solvable.

The remainder of this paper is organized as follows.
Section II introduces the mobile D2D network architecture
and the threat model. Section III presents our analysis on
the potential attacks that the D2D network is facing. In
Section IV we analyze four most popular D2D applications
and show that they suffer from the framework design flaws.
We presents three proof-of-concept attacks with experimental
results in Section V, followed by the improvement sugges-
tions in Section VI. Section VII reviews the related work and
Section VIII concludes this paper.

II. MOBILE D2D NETWORK ARCHITECTURE

AND THREAT MODEL

A. Wi-Fi Hotspot

Wi-Fi hotspot, also known as Wi-Fi Tethering, has been
gaining popularity as a convenient, on-the-move, and cost-
effective wireless Internet access technology. A Wi-Fi hotspot
network is a star-like cluster-based network with a central node

Fig. 1. IOS recognizes the hotspot network created by an Android app
utilizing WPA_PSK protection mechanism and alerts the user the security
type is not considered secure.

providing 3G/4G data tethering and allowing plural surround-
ing nodes to join and to gain Internet access. In this paper we
will henceforth refer to the central node and the surrounding
node as the cluster head (CH) and the cluster member (CM).

In Android system, developers can access Wi-Fi hotspot fea-
ture programmatically. This is how they use it to implement
the D2D feature in apps. However, due to Android D2D frame-
work restrictions, programming D2D implementation through
API may cause issues from three aspects.

1) Wi-Fi Tethering is System API: To turn on/off the Wi-Fi
hotspot feature programmatically, the developer must have an
open-sourced API to control the hotspot driver. However, the
Wi-Fi hotspot enabling method is a system API. In order to
access this API, the developer must use reflection in Java to
invoke this method using the method’s name. However, using
reflection is problematic because it undermines the runtime
certainty. More specifically, the Java compiler cannot check on
reflection. The reflected code may compile but may explode
at runtime because reflection uses the name for the method
rather than referring to the actual method. The method to
enable/disable Wi-Fi hotspot can be invoked through reflection
but it subverts the strength of Java.

2) WPA2_PSK is System API: To create a WPA2_PSK
secured hotspot network programmatically, the developer must
set the Wi-Fi configuration parameter to support WPA2_PSK
key management. However, the WPA2_PSK is a system API
as well; developers cannot access this security setting directly.
Even though Java reflection also works on WPA2_PSK, many
developers neglect the importance of network security and
leave the network vulnerable. We found out several high
download apps insecure due to coarse-grained software imple-
mentation. They use WPA_PSK as an alternative security
setting to protect the hotspot network. Many commercial
devices today recognize WPA_PSK as an insecure protection.
Fig. 1 shows the Wi-Fi interface of an IOS device connect-
ing to a hotspot network created by an Android app. The
IOS device recognizes that the network utilizes WPA_PSK
to encrypt data and it alerts the user the network is insecure.

3) Hotspot Without Password Absolutely Unprotected: The
use of hotspot imposes the risk of people capturing real-
time traffic over the wireless connections. Attackers can easily
capture, from the air, the packets of unsecured connections
to hotspots. It is intuitive that open hotspot has no security
protection but many hundred million download apps still

2924 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

TABLE I
COMPARISON BETWEEN WI-FI DIRECT AND WI-FI HOTSPOT

ON ANDROID PLATFORM

choose to use open hotspot, seeking to maximize the conve-
nience. Those apps leverage the user experience over security
but expose the information of the smart phone to the public.

B. Wi-Fi Direct

The essential functionality of Wi-Fi Direct is to enable
Wi-Fi devices to connect directly without joining a central
AP. Wi-Fi Direct is integrated into Android as Wi-Fi Direct
and the API is standardized by Android since Android 14.
Wi-Fi Direct is a software realization sharing the same network
interface card with the Wi-Fi module. Comparing with hotspot,
there are many similarities and differences. We summarize
them in Table I.
Wi-Fi

1) Wi-Fi Direct Versus Wi-Fi Hotspot: Direct inherits the
high-speed advantages from 802.11. The data transfer rate can
reach 54 Mb/s. Since both Wi-Fi Direct and hotspot uses the
same hardware, the RF coverage is 100 line-of-sight.

Similar to a hotspot, the Wi-Fi Direct network is also a star-
like, cluster-based network with a central node acting as a CH
and surrounding nodes as CMs. In contrast with hotspot, the
Wi-Fi Direct cluster is defined as a group in the Wi-Fi Alliance
standard. The CH is defined as the group owner (GO) and the
CM is defined as the group member (GM).

Like a Wi-Fi AP, a GO is visible by other Wi-Fi devices on
the Wi-Fi scan list; therefore, GO is sometimes called a soft
AP. Nevertheless, since Wi-Fi Direct is designed to provide the
D2D feature so the GO does not provide the Internet tethering
function to the GM.

2) Two Connection Types: There are two ways to join a
Wi-Fi Direct group: 1) through Wi-Fi Direct connection and
2) through legacy connection. A wireless link connecting a
device to a GO following the Wi-Fi Direct protocol is called a
D2D connection. On the other hand, any Wi-Fi device, regard-
less of Wi-Fi Direct support, can associate to the GO following
the Wi-Fi protocol. The associated client device is defined as
a legacy client and the corresponding connection is called a
legacy connection.

3) Different Security Mechanisms: Wi-Fi Direct also
acquires all the security mechanism from 802.11. A Wi-Fi
Direct network is by default protected by WPA2_PSK. As
discussed previously, a GO is a soft AP which can be con-
nected through a legacy connection. Once created, the soft

AP is WPA2_PSK encrypted and the password is randomly
generated by the network driver.

Additionally, if the group is established through the Wi-Fi
Direct protocol, extra protection mechanisms are introduced
in the standard. A human-involved paring authentication pro-
cess, which is a software transform of Wi-Fi protection
settings (WPS), is integrated into the Android network driver.
Specifically, there are three WPS options: 1) display pin con-
figuration; 2) keypad pin configuration; and 3) push button
configuration. Since the two-way authentication is a require-
ment by the Wi-Fi Direct standard, it is an inevitable procedure
during a D2D connection using Android devices.

4) Service Broadcast and Discovery: One of the most
important features of Wi-Fi Direct is connectionless service
broadcast and discovery (SBD). Using SBD allows devices
to discover the services of nearby devices directly, without
being connected to a network. A device can also advertise
the services running on it. These capabilities help devices
communicate between apps, even when no local network is
available.

C. Threat Model

Our effort concentrated on systematically discovering and
exploiting mobile D2D network framework design vulnerabil-
ities. Any scheme relevant to the above aspects were within
scope. We did not study attacks that attempt to crack the
security algorithm of the D2D network with advanced hack-
ing tools. Bugs in those areas were discussed and fixed in
802.11 security analysis. In contrast, attacks focused on soft-
ware design flaws had extensive influences since programming
frameworks were burdensome to change without significant
disruption once there was a large set of applications that used
the framework.

We focused this paper on D2D communication and related
applications which are designed independent of Internet avail-
ability. We aimed to create an offline attacking scenario
regardless whether Android devices, not limited to smart-
phones, have Internet access or not. The key point we are
trying to demonstrate is despite Android implements the D2D
features following the well-defined network standards and
it includes the well-known security mechanism, the D2D
network it creates has a backdoor to the intruders.

D. Conclusions of the Section

In this section, we introduce the background and the archi-
tectural design of two mobile D2D network protocols based
on the 802.11 standard: Wi-Fi hotspot and Wi-Fi Direct. By
making comparison and contrast, we claim that Wi-Fi Direct
is better implemented and protected on Android platform.
The most severe issue of Wi-Fi hotspot is the absence of
open-sourced API and the inadequacy of appropriate security
configurations. Android does not present an implicit setting
for developers to securely invoke the Wi-Fi hotspot feature.
Nevertheless, many apps still prefer to using it as the D2D
network basis due to its convenience rather than Wi-Fi Direct.

In later sections, we will illustrate our security analy-
sis of the mobile D2D network framework. Many of our

LIU et al.: SECURITY ANALYSIS OF MOBILE D2D NETWORK APPLICATIONS 2925

Fig. 2. Over privilege issue in Android network framework caused by
permission management.

investigations depend on the details emphasized on this
section.

III. SECURITY ANALYSIS OF MOBILE D2D
NETWORK FRAMEWORK

We break down the security of the Mobile D2D network
framework into four general themes. Our methodology
involves creating a list of attack models based on this paper of
the mobile D2D network architecture and extensively testing
each potential attack model with prototype mobile D2D apps.
We describe each investigation and will expound our findings
later in this section.

A. Overprivileged D2D Network Access

Android uses permission to avoid overprivilege issues. To
maintain security for the system and users, Android requires
apps to request permission before the apps can use certain
system data and features. Depending on how sensitive the area
is, the system may grant the permission automatically, or it
may ask the user to approve the request. Thus, if an application
does not request to use a certain feature but the permission to
access the feature is still granted, this accidental permission
acquisition is an example of overprivilege.

As shown in Fig. 2, Android does not provide any per-
mission to particularize the accesses to Wi-Fi hotspot and
Wi-Fi Direct; which means to establish an 802.11-based D2D
network, an application only has to acquire the Wi-Fi per-
missions. This framework design articulates the overprivilege
problems because any app that has access to the Wi-Fi fea-
ture will have the privilege to utilize the D2D network feature
as well.

The permissions to use Wi-Fi is not a sensitive permis-
sion for users because most applications installed on the smart
phone need to have the access to use Wi-Fi and the Internet,
such as the music app, the GPS app and the social network
app. Users will not pay extra attention to an app that requests

the usage of Wi-Fi if they believe that application needs to
use the Internet.

This framework design leaves applications that rely on the
D2D feature in significant danger because there is only one
network driver on the Android device and the information
about the network is singleton; which means the SSID and
the password are consistent on the framework level regardless
which app is trying to get it. The overprivilege issue allows
almost every app on the device to more or less access the key
information to the D2D network. It gives attackers the opportu-
nity to maliciously manipulate the network, including intercept
data transmission, eavesdropping, sending false signals etc.

In order to take advantage of the framework design flaw, all
attackers need to do is to install a benign-but-malicious app
that requests the permission to access Wi-Fi. The framework
would ask the user to authorize the permission. Unfortunately,
the request is too common so that it will neither alert the user
nor the system; therefore, the user is very unlikely to deny the
request, making the attack an essentially effortless assignment.

Once the benign-but-malicious app is installed on the smart
phone, the sensitive network information is at risk and an
offline leakage attack can be executed by the third party. We
will discuss this attack model in the following paragraphs.

B. Sensitive Network Information Leakage

As discussed in Section IV-A, the overprivilege issue due to
coarse-grained framework opens a back door to a third party
app to access key information about the network. Because the
framework does not place any restrictions on outbound Internet
communication either, such a design flaw allows malicious
apps to abuse this ability to leak sensitive information from a
victim’s smart phone.

However, information leakage via the Internet is not what
we concentrate on for two reasons. First, in a D2D network
scenario, Internet is assumed unavailable; second, D2D data
is transmitted locally without the Internet access. We exploit
an offline attack model based on the D2D network architec-
ture described in Section III. Following our attack logic, a
third party device can receive key information about the D2D
network in offline mode.

Fig. 3 depicts the attack model. Users Alice and Bob both
have a D2D app installed on their smart phones and they
use the app to establish a D2D network. Because the wire-
less range is 100 m line-of-sight, Alice and Bob must be in
physical proximity to maintain the wireless connection. On
Alice and Bob’s smart phones, a benign-but-malicious app
is also preinstalled which has acquired the Wi-Fi permission
from the users. Due to the overprivilege issue discussed in
Section IV-A, this app can obtain the key information about
the D2D network.

We assume Trudy is the attacker and in order to perform an
offline attack, he must locate in physical proximity to Alice
and Bob as well. His smartphone must be able to detect the
signals transmitted by Alice and Bob’s smart phones. This is
not an impossible scenario because Trudy can pretend to be a
random person standing near Alice and Bob but far enough so
that they believe nobody can see their operations on their smart

2926 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 3. Offline attack model to obtain key information about the network.

Fig. 4. Flowchart to cause network information leakage due to framework
design flaws.

phones. Furthermore, Alice, Bob, and Trudy’s smart phones
are completely offline in our attack model.

The operational flow chart of the malicious app installed on
Alice and Bob’s smart phones is shown in Fig. 4. The purpose
of the malicious app is to induce network information leakage
so the first thing it needs to examine is the D2D network
status. If the smart phone is not part of the D2D network,
the malicious program maintains its benign behavior. As soon
as it detects the network establishment, it will change to the
hacking mode. The network establishment event is triggered
by multiple Android system intents. We contain all events,
including Wi-Fi Direct group creation, D2D connection, Wi-Fi
hotspot creation, and Wi-Fi network association, in the same
intent receiver.

After the app receives the network establishment event, it
identifies which type of the D2D network the smart phone
has joined. If the network is a hotspot network, it examines
whether the device is a CH or a CM. Similarly, if the network
is a Wi-Fi Direct network, it examines whether it is a GO or
a GM. We separate the procedures because only CH and GO
contain the key information about the network. The D2D appli-
cation determines either Alice or Bob become the access point
of the network, but to Trudy, it does not make any difference
which smart phone is the access point. All Trudy anticipates
is the network name and its key.

We will first discuss the situation if the smart phone is
a GO. Because of the overprivileged framework design, the
malicious app now can retrieve the SSID and the password of
the Wi-Fi Direct network. Android provides the open-sourced
API to achieve this. After the key information has been stolen,

the malicious app will take advantage of the Wi-Fi Direct
SBD feature. Refer to Section III-B, SBD is a connectionless
data transmission feature provided by Wi-Fi Direct. Since the
malicious app has access to the entire Wi-Fi Direct API due
to overprivilege, it can utilize SBD to accomplish the offline
attack. The malicious app can register the SSID and the pass-
word as a broadcast service. Any nearby device can discover
this service if it scans following the SBD standard. This is
exactly what Trudy’s smart phone is running. Trudy can pro-
gram an app on the smart phone to periodically scan for nearby
services. Because Trudy is in physical proximity to Alice and
Bob, Trudy’s smart phone has a great chance to discover the
service registered on both Alice and Bob’s smart phones.

There is another situation that the D2D network established
by Alice and Bob’s smart phones is a hotspot network. In
this scenario, the malicious app can still retrieve the pass-
word of the network due to overprivileged framework design.
Although Android does not provide an open-sourced API
for the developer to get this information, the developers can
still use reflection to invoke a hidden system API called:
getWiFiApConfiguration.

The next step of the offline attack is different from the
previous situation. Refer to the context in Section III-B,
because Wi-Fi hotspot and Wi-Fi are not compatible and Wi-Fi
Direct requires the smart phone to enable Wi-Fi, the key infor-
mation retrieved by the malicious app cannot get registered
by SBD on the smart phone which provides hotspot service.
To make a successful offline attack, the malicious app can
exploit the client smart phone because the client must have
the Wi-Fi turned on in order to connect to the hotspot. Thus,
after the malicious app has got the key information, it patiently
waits for the connection from the client device. Once the
client has joined the hotspot network, it transmits the pass-
word to the client device and the malicious app installed on
the client device will register the password using the SBD
feature. Trudy’s smart phone still scans for nearby services
and eventually, it will discover the password registered on the
client device.

The offline key information leakage is now complete: Trudy
steals the password that protects the D2D network established
by Alice and Bob without their notice. The same attack logic
applies on both hotspot network and Wi-Fi Direct network on
Android platform.

C. Avoidable Human-Involved Authentication Process

In previous sections, we introduced the human-involved
two-way authentication process during mobile D2D network
establishment. Human involvement is one of the best solutions
to eliminate security risk in D2D network because a human
can physically identify the appropriate device and approve the
connection request. However, due to coarse-grained frame-
work design, hackers can bypass the two-way authentication
process.

From Section IV-B, attackers can offline retrieve the
password of the network. Now using the password, any
device can join the network without undertaking the two-way
authentication.

LIU et al.: SECURITY ANALYSIS OF MOBILE D2D NETWORK APPLICATIONS 2927

Fig. 5. Example of saved networks by a certain software.

Wi-Fi Direct network has extra protection mechanism in the
standard and Android has integrated the paring procedure on
the system level. However, Wi-Fi Direct supports two con-
nection types: 1) D2D connection and legacy connection and
2) human-involved paring only applies to the D2D connection.
Because attackers have known the password to the GO, they
can join the Wi-Fi Direct network via a legacy connection,
which is the same as to join a Wi-Fi AP. In this way, the
human-involved paring protection will not get invoked on the
Android smart phone.

There is an automated procedure that allows the Trudy’s
smart phone to join an encrypted Wi-Fi network program-
matically. After Trudy’s smart phone has received the key
information from the previous attack, it follows the attacking
operations as described below. The procedure is a combination
of network APIs following the Wi-Fi connection logic.

The first step is to create the compatible network config-
uration of the targeting network. The key points of the new
configuration are the SSID, the password and the encryption
method. The second step is to save the new configuration to
the configuration list in the Android system. Android provides
such an API called: addNetwork. The third step is to reconnect
to the currently active access point. We use reconnect because
the network has been preconfigured and saved in the system.
The network driver considers the target network as a past-
connected network and it is capable of reconnecting to that
access point when nearby. Fig. 5 shows an example of how
Android distinguish the programmatically saved networks and
the typed-in saved networks. It marks the app’s name below
the SSID.

Through those three steps, attacker circumvents the human-
involved authentication process and joins the D2D network
without notifying the owner of the network.

D. Insecure Data Transfer

Developers have great freedom to choose how to transmit
data on the D2D network. Android neither specifies nor limits
the protocol to make data transfer on the application level.
Because file transfer is the most common application using
the mobile D2D network, we focus our security analysis on
the protocol choices related to file transfers. In the following
paragraph we illustrate two popular file transfer protocols on
D2D network and their security issues.

1) FTP on D2D Network: FTP can adapt to D2D network
and guarantee file transfer service. FTP also applies to a client–
server model, but comparing to the direct TCP socket transfer,
the server and client roles are inverted. Fig. 6 demonstrates

Fig. 6. FTP over D2D network and its work flow.

how D2D network utilizes FTP for local service. The two
channels, one on port 21 and the other on the feedback port,
is an implementation of the FTP out-of-band design. FTP on
mobile D2D network inherits the FTP features, such as pause,
restart, and continue transfer. It also inherits the FTP log in
mechanism. If the password is required by the server, the client
has to log in to the FTP server before file transfer. If the
password is not required by the server then any device in the
network could download the file from the server. FTP does
not provide extra encryption mechanism to protect the data
transfer.

In Internet scenario, FTP normally combines with secure
socket layer (SSL) and secure shell (SSH) to enhance security
on transport layer and application layer. In the offline scenario,
because the network is assumed private and isolated, SSL and
SSH are neglected; even the log in step in FTP is omitted to
provide best convenience to users. However, as descripted in
previous parts, intruders can exploit the D2D network with a
benign-but-malicious app installed on users the cellphone. The
D2D network is not an absolute safe network even with strong
password protection; therefore, unencrypted data suffers from
multiple threats when an intruder hacks into the network. Due
to limited access and variety of file transfer apps, we have not
identify an app in current market uses the offline FTP model
introduced in this part. Nonetheless, we have verified it as a
practical D2D file transfer model and examined its possible
security vulnerabilities.

2) HTTP on D2D Network: The usage of HTTP on the
D2D network is similar to FTP. Fig. 7 illustrates the implemen-
tation of HTTP on D2D network. The server side is the smart
phone providing data and the client side is the one receiving
data. On the server side, it binds port 80, which is the reserved
HTTP port, on a server socket and waits for the connection.
The client side initiates a TCP connection to port 80. If there is
a successful connection established on port 80, then the server
device uses HTTP POST to post the file directory on its local
server. The server device also updates the post directory to the
client device through the same connection. The client device
can access the file using HTTP GET. The server places the
file packets in the data field of the HTTP GET.

Similar to FTP, HTTP does not provide encryption mecha-
nism to protect data. In the Internet scenario, HTTPS solves
the encryption issue. HTTPS is a combination of HTTP on
the application layer and SSL on the transport layer. In
the D2D network scenario, developers choose HTTP over
HTTPS because HTTPS requires certificate authority (CA)
but CA can only provide online service. In offline mode,

2928 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 7. HTTP over D2D network and its work flow.

TABLE II
STATISTICAL BREAKDOWN OF OUR ANALYSIS

CA is unreachable from the smart phone so the protec-
tion mechanism may be burdensome. To guarantee the file
transfer feature, developer prefers HTTP over HTTPS but
sending unencrypted data over HTTP is an insecure application
design and Section IV discuss an example attacks targeting
on HTTP.

IV. EMPIRICAL SECURITY ANALYSIS OF MOBILE

D2D NETWORK APPS

To understand how the security issues discussed in
Section IV manifest in practice, we download four highest
download file transfer apps from the Google Play Store and
performed in depth analysis. The total number of downloads
of those apps is over 1.5 billion, according to the statics
shown on both Google Play Store and Chinese Android Play
Store. Table II contains a statistical breakdown of our analy-
sis on each application. Our analysis shows that all of those
apps suffer from the framework design flaws discussed in
Section IV.

A. Shareit

Shareit claims to be the number 1 file transfer tool in the
world. It has over 500 million users in China, 300 million
users in India and over 1 billion users in world wide. Despite
being such a popular application, its security implementation is
coarse-grained and we found multiple security issues. Before
we can make an analysis on the network, we must identify
which protocol it selects as the network basis. The default D2D
network established by Shareit is via hotspot. Wi-Fi Direct fea-
ture is included in the setting and user can enable it. However,
Shareit marks Wi-Fi Direct as a Beta feature and it alters users
the Beta version is unstable. Thus, we focus our analysis on
the hotspot network.

The hotspot network created by Shareit is an open network
by default. This is a risky design because anyone can access

Fig. 8. Shareit creates a WPA_PSK protect network and it is detected as an
insecure network.

Fig. 9. Shareit experiences the key information leakage problem.

Fig. 10. Context in the file params.txt.

the network regardless of the password. Shareit indeed offers
an option for users to setup a customized password but
the security level is only WPA_PSK. As we mentioned in
Section III, WPA_PSK has been proved not secure. Fig. 8
shows the password protected network created by Shareit is
detected as a weak protection network. Fig. 9 shows Shareit
experiences key information leakage. A third party benign-
but-malicious app can retrieve the same password created by
Shareit from the network framework.

On the application layer, Shareit chooses to use HTTP
POST and GET as the file transfer protocol instead of HTTPS.
This design choice leaves data unencrypted and a packet cap-
ture tool can catch the information transmitting on the network.
To prove our point, we performed a file transfer using Shareit.
The format of the file is .txt and the name of the file is
params.txt. This is a just a random .txt file we found in our
experiment smart phone. The context of the file is just some
random parameters as shown in Fig. 10.

During the file transfer, we started the packet capture
tool. Our tool flagged each packet capture when it detected
upstream and downstream processed by a certain application.
It marked the application and attached the details of the packet
afterward. Fig. 11 illustrates the packet capture result. The
unencrypted data was exposed to our tool. Any smart phone

LIU et al.: SECURITY ANALYSIS OF MOBILE D2D NETWORK APPLICATIONS 2929

Fig. 11. Shareit packet capture result. The unencrypted data is exposed to
our tool.

connected to this network could exploit similar attacks and
steal information from this network. We used a .txt file for a
better demonstration in our analysis. The attacker can recon-
struct any type of file based on the intercepted data and the
corresponding file type, which is normally captured in the
HTTP header.

B. Zapaya and Send Anywhere

Zapaya and Send Anywhere are very similar tools to Shareit.
They also have a large number of users in world wide.
According to the statistics on the official website and Google
Play Store, they have almost 510 million users globally. We
performed the same attack on them and observed the same
vulnerabilities as Shareit.

C. SuperBeam

SuperBeam is a Wi-Fi Direct-based D2D file transfer tool.
According to the statistics from Google Play Store, it has 1050
million downloads. Refer to the architectural design of Wi-Fi
Direct in Section III, the network is automatically encrypted
by WPA2_PSK and there is an additional system level human-
involved paring protection. Thus, the network created by
SuperBeam is essentially safer than the network created by
previous three applications. However, due to coarse-grained
framework design, SuperBeam also has key information leak-
age issue and attackers can bypass the paring authentication
procedure with a legacy connection.

SuperBeam utilizes HTTP on the application layer to handle
file transfer. The implementation of HTTP is slightly differ-
ent from previous three applications. Other than sending and
receiving data exclusively through the application, SuperBeam
offers a feature that allows connected devices to download the
file from the Web browser. We exploit this feature and con-
struct a new attack model to steal the file from the HTTP
server. We will demonstrate such a combinational attack in
Section VI.

V. PROOF-OF-CONCEPT ATTACKS

We show three concrete ways in which we combine var-
ious security design flaws and developer-bugs discussed in
Sections III–V to weaken mobile D2D network security. We
first present an offline attack that exploits password pro-
tected network with a benign-but-malicious app which requests

Fig. 12. Top left: Hack SuperBeam catches the group formation event and
registers the key information on SBD. Top right: Trudy steals the key infor-
mation of the network through an offline attack. Bottom: Hack SuperBeam
saves the network configuration, allowing Trudy’s smart phone to reconnect
to Alice’s phone.

minimum permissions from Android system. We then show an
attack that steal the file from a smart phone which intents to
establish file transfer service with a peer. In the third attack we
show an intruder in the network can eavesdrop on the network
and capture data during a file transfer.

A. Offline Network Hacking Attack

The threat model we use in this attack is the same as
what we introduced in Section IV-B. We setup three smart-
phones. Two of them are Alice and Bob and the other
one is Trudy. Alice and Bob are trying to establish a D2D
network using SuperBeam and Trudy will hack into the
network.

On all three smart phones, we installed the benign-but-
malicious app and we call it Hack SuperBeam. This appli-
cation is programmed thoroughly using open-sourced API
provided by Android and none of those three smart phones
are rooted devices. They are off-the-shell smart phones running
the primitive Android operating system.

Hack SuperBeam exploits the overprivileged framework. It
seems to have a benign behavior because it does not trigger
any sensitive system alarm whatsoever. It requests a few most
common permissions from the system as majority application
does.

Hack SuperBeam follows the attack logic described in
Fig. 4. To snap the network change events, the first step is
to register the system actions that reflects the change of the
network and connections. The second step Hack SuperBeam
takes is to get the key information of the network. Fig. 12
demonstrates Hack SuperBeam receives the group establish-
ment event. After group formation, Hack SuperBeam uses the
API to retrieve group information. The third step is to reg-
ister the captured SSID and password to the connectionless
broadcast service using the SBD feature. The final step is
to make a legacy connection to the GO. Fig. 12 shows the
network configuration is saved by Hack SuperBeam, indi-
cating the final step before connection. Thereafter, Trudy’s
device can reconnect to Alice’s phone with a legacy
connection.

2930 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 13. Left: Trudy can download the image file displayed on his smart
phone using Hack SuperBeam. Right: packet capture on SuperBeam reveals
the unencrypted data.

B. File Stealing Attack

In the previous section, we exploit an offline network hack-
ing attack. Trudy is now in the D2D network created by Alice
and Bob and he can download the file from Alice.

SuperBeam offers a function for the peers to download the
file on a Web browser. Trudy is now a peer in the network
and Hack SuperBeam can exploit this feature and download
the sharing files.

SuperBeam post the context of the sharing files on its local
server. The address of the files is 192.168.49.1:8080. At this
point, Trudy can download the file and complete the file steal-
ing attack. Fig. 13 demonstrates the webview and URL in Hack
SuperBeam that allows Trudy to download the file.

C. Packet Eavesdropping

Packet eavesdropping also applies to SuperBeam because
it does not encrypt data throughout the file transfer process.
After Trudy hacked into the network, he can use a packet
capture tool and eavesdrop on the network. The unencrypted
data in Fig. 13 is from the .txt file Alice sends to Bob. Trudy
can intercept the data and steal the information.

VI. IMPROVEMENT SUGGESTIONS

We discuss some lessons learned from the analysis of the
mobile D2D network on Android that we believe to be broadly
applicable to mobile D2D network framework design. We also
provide some improvement suggestions.

1) Extra Permission to Access D2D Network: Android does
not provide dedicate permissions to access D2D network. Any
application installed on the device has equivalent access to
the D2D network, even though it does not need to use this
feature. This causes overprivilege issues and it becomes the
fundamental vulnerability to other threats. We suggest Android
place dedicated permissions to control the accessibility of
D2D network, including Wi-Fi hotspot and Wi-Fi Direct. This
can avoid irrelevant third party app retrieving key information
about the network.

2) Key Network Information Protection: Key information
about the network should have restricted access. If one appli-
cation is using the D2D feature and the framework should
prevent another application access the key information about
the network. If both applications want to share the D2D

network feature, the user must get altered and authorize this
request.

3) Keep Track of the Number of Clients: The host of the
network, the CH or the GO, should keep track of the number
of clients in the network to prevent intruders. The host device
can read its ARP table and determine how many devices are
reachable in the network. If there is an unrecognized device
joins the ARP table, the host device should pause the D2D
service immediately and alert the user.

4) Data Encryption: There are multiple ways to solve this
issue. Developers can preinstalled a shared key in the appli-
cation to encrypt data. The preinstalled key can also support
Diffie–Hellman to establish a temporary shared key for encryp-
tion. The purpose of the encryption key is to provide a secure
offline transportation layer so data transmission using HTTP
and FTP can be secure.

The security issue due to framework overprivilege is of
fundamental importance. Since it is a middleware security
problem, the solution to eliminate the vulnerability requires
the effort from both industrial and academic sides. The solu-
tion we proposed in this paper is to avoid such security issues
on the application level. App developers can take our advice
and make corresponding changes to patch the security bugs.
The fixes seem to be simple but the problem is not supposed to
be in the middleware in the first place. It is not the developer’s
responsibility to follow a specific setup of APIs to make their
application safe. Nonetheless, we pointed out a nonobvious
architectural issue in designing a secure mobile D2D network
to which all developers must pay attention, and we give out a
solution to avoid the design issue.

VII. RELATED WORK

There are a number of pioneering research works studied
multiple aspects of D2D communication. Among them, [7]
developed an analytical model for analyzing the cover-
age probability and ergodic rate of users in the cellular
network. Cao et al. [6] studied the resource allocation problem
for minimizing the end-to-end delay for D2D communica-
tions in the vehicular network. Liu et al. [16] presented a
comprehensive survey of available D2D research works, and
outlined several open research problems. As to the security
aspect, Shen et al. [22] proposed a key establishment protocol
for initial trust establishment in a WiFi Direct D2D network,
Haus et al. [11] presented an extensive review of the state-of-
the-art solutions for enhancing security and privacy in D2D
communication. The review spanned across a variety of D2D
prospects, such as network communication, peer discovery,
proximity services, and location privacy. Haus et al. [11] also
provided a detailed discussion on D2D privacy. It summarized
and compared the existing solutions according to security and
privacy requirements.

Since this paper focuses on IEEE 802.11-based D2D com-
munication, the thorough studies of IEEE 802.11 security
protocols are related to this paper. Lashkari et al. [15]
explained the structure and problems of WPA and WPA2.
Adnan et al. [1] made a comparison between WPA and
WPA2, and correlated the two with respect to performance.

LIU et al.: SECURITY ANALYSIS OF MOBILE D2D NETWORK APPLICATIONS 2931

Raju and Nair [21] considered vulnerabilities like open nature
of communication channel, lack of confidentiality, weak
encryption methods, etc., in a Wi-Fi hotspot and proposed a
security protocol that ensured individual confidentiality during
the communication.

Although this paper focuses on the security issue in Wi-Fi
related D2D systems, our group has also reviewed works
related to the mobile D2D system based on Bluetooth technol-
ogy. Bluetooth related technologies have been widely adapted
in wearable devices, such as watches and wristbands. The
security issues inherent in Bluetooth are largely due to the
process of pairing one device to another. Bluetooth paring
is still subject to Man-in-the-Middle attacks, even after the
devices are paired. The biggest factor in Bluetooth vulner-
abilities is the version of Bluetooth that is being used, and
the security of communications between devices is only as
strong as the weakest link, i.e., the device with the oldest
(weakest) version. Such vulnerabilities include coarse PIN
management, unlimited challenge requests, and weak stream
cipher [20], [23].

Some groups had studied the security of D2D network
from smart phone applications. Bai et al. performed a security
analysis on Apple’s major ZeroConf components and found
out it is mostly unprotected. IOS system is a close-sourced
environment and this group took the challenge and con-
cluded ZeroConf systems like AirDrop did not have security
guaranteed [3], [19].

The security of Android system is under strict scrutiny. The
Android operating system uses the permission-based model
which allows applications to access user information, system
information, device information, and external resources of the
smart phone. Misuse of app permissions is one of the main rea-
sons leading to the overprivilege in the mobile D2D network.
Studies of Android security issues presented in [10], [12],
[13], and [25] provided a systematic study of the Android secu-
rity architecture. Buhov et al. [5], Kawamoto et al. [14], and
Liu et al. [17] focused on the current issues related to misuse
of the network protocols in Android such as HTTPS and SSL.

Vulnerabilities in connections between proximate
devices have been studied extensively. Haus et al. [11]
and Xia et al. [25] identified three security threats due to:
1) direct wireless connections; 2) mobility of end users; and
3) privacy issues in social applications. The greater the num-
ber of devices that adopt D2D communication, the greater
the interest of adversaries to attack these networks [23].
According to recent study [19], security and privacy are open
issues for D2D.

VIII. CONCLUSION

We performed an empirical security evaluation of the
mobile D2D framework on Android operating system.
Analyzing mobile D2D network was challenging because there
were multiple mechanisms to establish a D2D network on
Android and each of them uses distinct security protections.
Additionally, the apps installed on Android were close-sourced
individual modules so we did not know how file transfer
service was implemented on the application level.

We performed an overprivilege analysis of four most pop-
ular D2D file transfer apps to determine how well the mobile
D2D framework protects user’s information and privacy. The
four apps have over 1.5 billion users combined. We discovered:
1) all those apps suffer from the overprivilege issue due to
coarse-grained network framework; 2) key information leakage
is a prevailing threat; 3) the system-enforced human-involved
authentication process is avoidable; and 4) unencrypted data
transfer over network is insecure. We combined these design
flaws with other vulnerabilities and constructed three proof-
of-concept attack to: 1) hack into a D2D network; 2) steal
a file from a network; and 3) eavesdropping on a network to
capture unencrypted data. At the end of this paper, we summa-
rized the lessons from our analysis and provided improvement
suggestions.

REFERENCES

[1] A. H. Adnan et al., “A comparative study of WLAN security protocols:
WPA, WPA2,” in Proc. IEEE Int. Conf. Adv. Elect. Eng. (ICAEE), 2015,
pp. 165–169.

[2] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 4, pp. 1801–1819, 4th Quart., 2014.

[3] X. Bai et al., “Apple ZeroConf holes: How hackers can steal iPhone pho-
tos,” IEEE Security Privacy, vol. 15, no. 2, pp. 42–49, Mar./Apr. 2017.

[4] O. Bello and S. Zeadally, “Intelligent device-to-device communication
in the Internet of Things,” IEEE Syst. J., vol. 10, no. 3, pp. 1172–1182,
Sep. 2016.

[5] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova,
“Network security challenges in Android applications,” in Proc. IEEE
Int. Conf. Availability Rel. Security (ARES), 2015, pp. 327–332.

[6] X. Cao, L. Liu, Y. Cheng, L. X. Cai, and C. Sun, “On optimal device-to-
device resource allocation for minimizing end-to-end delay in VANETs,”
IEEE Trans. Veh. Technol., vol. 65, no. 10, pp. 7905–7916, Oct. 2016.

[7] J. Dai, J. Liu, Y. Shi, S. Zhang, and J. Ma, “Analytical modeling
of resource allocation in D2D overlaying multihop multichannel
uplink cellular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 6633–6644, Aug. 2017.

[8] Z. Degui and Y. Geng, “Content distribution mechanism in mobile P2P
network,” J. Netw., vol. 9, no. 5, p. 1229, 2014.

[9] G. Ding and B. Bhargava, “Peer-to-peer file-sharing over mobile ad
hoc networks,” in Proc. IEEE Annu. Conf. Pervasive Comput. Commun.
Workshops, Orlando, FL, USA, 2004, pp. 104–108.

[10] P. Faruki et al., “Android security: A survey of issues, malware pen-
etration, and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 998–1022, 2nd Quart., 2015.

[11] M. Haus et al., “Security and privacy in device-to-device (D2D) com-
munication: A review,” IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 1054–1079, 2nd Quart., 2017.

[12] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open doors for
bob and mallory: Open port usage in Android apps and security impli-
cations,” in Proc. IEEE Eur. Symp. Security Privacy (EuroSP), 2017,
pp. 190–203.

[13] S. Karthick and S. Binu, “Android security issues and solutions,” in Proc.
IEEE Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), 2017, pp. 686–689.

[14] Y. Kawamoto et al., “A feedback control-based crowd dynamics man-
agement in IoT system,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1466–1476, Oct. 2017.

[15] A. H. Lashkari, M. M. S. Danesh, and B. Samadi, “A survey on wireless
security protocols (WEP, WPA and WPA2/802.11i),” in Proc. IEEE Int.
Conf. Comput. Sci. Inf. Technol. (ICCSIT), 2009, pp. 48–52.

[16] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device communi-
cation in LTE-advanced networks: A survey,” IEEE Commun. Surveys
Tuts., vol. 17, no. 4, pp. 1923–1940, 4th Quart., 2015.

[17] J. Liu, Y. Kawamoto, H. Nishiyama, N. Kato, and N. Kadowaki,
“Device-to-device communications achieve efficient load balancing in
LTE-advanced networks,” IEEE Wireless Commun., vol. 21, no. 2,
pp. 57–65, Apr. 2014.

[18] K. Liu et al., “Development of mobile ad-hoc networks over Wi-Fi
direct with off-the-shelf Android phones,” in Proc. IEEE Int. Conf.
Communications (ICC), 2016, pp. 1–6.

2932 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

[19] S. U. Masruroh, I. Saputra, and Nurhayati, “Performance evaluation
of instant messenger in Android operating system and iPhone operat-
ing system,” in Proc. IEEE Int. Conf. Cyber IT Service Manag., 2016,
pp. 1–6.

[20] N. B.-N. I. Minar and M. Tarique, “Bluetooth security threats and solu-
tions: A survey,” Int. J. Distrib. Parallel Syst., vol. 3, no. 1, p. 127,
2012.

[21] L. K. Raju and R. Nair, “Secure hotspot a novel approach to secure pub-
lic Wi-Fi hotspot,” in Proc. IEEE Int. Conf. Control Commun. Comput.
India, 2015, pp. 642–646.

[22] W. Shen, B. Yin, X. Cao, L. X. Cai, and Y. Cheng, “Secure device-to-
device communications over WiFi direct,” IEEE Netw., vol. 30, no. 5,
pp. 4–9, Sep./Oct. 2016.

[23] M. Wang and Z. Yan, “A survey on security in D2D communications,”
Mobile Netw. Appl., vol. 22, no. 2, pp. 195–208, 2017.

[24] S. Wang et al., “Opportunistic routing in intermittently connected
mobile P2P networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 9,
pp. 369–378, Sep. 2013.

[25] X. Xia, C. Qian, and B. Liu, “Android security overview: A system-
atic survey,” in Proc. IEEE Int. Conf. Comput. Commun. (ICCC), 2016,
pp. 2805–2809.

Kecheng Liu (S’15) received the B.E. degree
in electrical and computer engineering from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 2013, and the M.S. degree
in computer engineering from the Illinois Institute
of Technology, Chicago, IL, USA, where he is cur-
rently pursuing the Ph.D. degree at the Department
of Electrical and Computer Engineering.

His current research interests include Internet of
Things system security and device-to-device network
security.

Wenlong Shen (GS’13–M’16) received the B.E.
degree in electrical information engineering from
Beihang University, Beijing, China, in 2010, the
M.S. degree in telecommunications from the
University of Maryland at College Park, College
Park, MD, USA, in 2012, and the Ph.D. degree in
electrical and computer engineering from the Illinois
Institute of Technology, Chicago, IL, USA, in 2018.

His current research interests includes informa-
tion security, D2D communications, and wireless
networking.

Yu Cheng (S’01–M’04–SM’09) received the B.E.
and M.E. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1995 and
1998, respectively, and the Ph.D. degree in electri-
cal and computer engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2003.

He is currently a Full Professor with the
Department of Electrical and Computer Engineering,
Illinois Institute of Technology, Chicago, IL, USA.
His current research interests include wireless
network performance analysis, network security, big

data, cloud computing, and machine learning.
Dr. Cheng was a recipient of the Best Paper Award at QShine 2007,

the IEEE ICC 2011, the Runner-Up Best Paper Award at ACM MobiHoc
2014, the National Science Foundation CAREER Award in 2011, and the IIT
Sigma Xi Research Award in the Junior Faculty Division in 2013. He has
served as the Symposium Co-Chair for IEEE ICC and IEEE GLOBECOM,
and the Technical Program Committee Co-Chair for WASA 2011 and ICNC
2015. He was a founding Vice Chair of the IEEE ComSoc Technical
Subcommittee on Green Communications and Computing. He was an IEEE
ComSoc Distinguished Lecturer from 2016 to 2017. He is an Associate Editor
for the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Lin X. Cai (GS’09–M’10) received the M.A.Sc. and
Ph.D. degrees in electrical and computer engineer-
ing from the University of Waterloo, Waterloo, ON,
Canada, in 2005 and 2010, respectively.

She was a Post-Doctoral Research Fellow with
the Electrical Engineering Department, Princeton
University, Princeton, NJ, USA, in 2011. She
joined the Huawei U.S. Wireless Research and
Development Center, as a Senior Engineer in 2012.
She has been an Assistant Professor with the
Department of Electrical and Computer Engineering,

Illinois Institute of Technology, Chicago, IL, USA, since 2014. Her current
research interests include green communication and networking, broadband
multimedia services, and radio resource and mobility management.

Dr. Cai was a recipient of the Post-Doctoral Fellowship Award from the
Natural Sciences and Engineering Research Council of Canada in 2010, the
Best Paper Award from IEEE Globecom 2011, and the NSF Career Award
in 2016. She is an Associate Editor of IEEE Network Magazine and the
IEEE TRANSACTION ON WIRELESS COMMUNICATIONS and the Co-Chair
for IEEE conferences.

Qing Li (M’03) is a Vice President of Engineering
with the Network Protection Products Business Unit,
Symantec Cooperation, Mountain View, CA, USA.
He served as the Chief Scientist with Blue Coat
Systems, Sunnyvale, CA, USA, where he is a well-
known V1.0 technology and product innovator. He is
an industry veteran with over 20 years of experience,
with 28 issued patents and many more pending. He
is a published author of five first-of-their-kind books,
by Springer-Verlag, Morgan Kaufmann, and Wiley.
His books have been translated into multiple foreign

languages and are serving as reference texts in universities and in industry
around the world.

Sheng Zhou (GS’05–M’11) received the B.E.
and Ph.D. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2005 and
2011, respectively.

In 2010, he was a Visiting Student with the
Wireless System Lab, Department of Electrical
Engineering, Stanford University, Stanford, CA,
USA, for five months. From 2014 to 2015, he
was a Visiting Researcher with Central Research
Laboratory, Hitachi Ltd., Tokyo, Japan. He is cur-
rently an Associate Professor with the Department

of Electronic Engineering, Tsinghua University. His current research interests
include cross-layer design for multiple antenna systems, mobile edge com-
puting, and green wireless communications.

Zhisheng Niu (M’98–SM’99–F’12) received the
graduation degree from Beijing Jiaotong University,
Beijing, China, in 1985, and the M.E. and
D.E. degrees from the Toyohashi University of
Technology, Toyohashi, Japan, in 1989 and 1992,
respectively.

From 1992 to 1994, he was with Fujitsu
Laboratories Ltd., Tokyo, Japan. In 1994, he joined
Tsinghua University, Beijing, China, where he is cur-
rently a Professor with the Department of Electronic
Engineering. His current research interests include

queueing theory, traffic engineering, mobile Internet, radio resource manage-
ment of wireless networks, and green communication and networks.

Dr. Niu was a recipient of the Outstanding Young Researcher Award from
the Natural Science Foundation of China in 2009 and the Best Paper Award
from the IEEE Communication Society Asia–Pacific Board in 2013. He has
served as the Chair of the Emerging Technologies Committee from 2014
to 2015, the Director for Conference Publications from 2010 to 2011, and
the Director for the Asia–Pacific Board from 2008 to 2009 of the IEEE
Communication Society, and is currently serving as the Director for Online
Contents from 2018 to 2019 and an Area Editor for the IEEE TRANSACTIONS

ON GREEN COMMUNICATIONS AND NETWORKING. He was also selected as
a Distinguished Lecturer of the IEEE Communication Society from 2012 to
2015 and IEEE Vehicular Technologies Society from 2014 to 2018. He is a
Fellow of the IEICE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

