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Abstract—This paper studies the maximum throughput that
can be supported by a given wireless mesh backhaul network,
over a practical CSMA/CA medium access control (MAC) proto-
col. We resort to the multi-commodity flow (MCF) formulation,
augmented with the conflict-graph constraints, to jointly compute
the maximum throughput and the associated optimal network
dimensioning; while use a novel approach to take into account
the collision overhead in the distributed CSMA/CA MAC. Such
overhead has been ignored by the existing MCF-based capacity
studies, which assume impractical centralized scheduling and
result in aggressive network dimensioning, unachievable over
the CSMA/CA MAC. We develop a generic method to integrate
the CSMA/CA MAC analysis with the MCF formulation for
optimal network capacity analysis, and derive both an upper
bound and a lower bound of the network throughput over a
practical CSMA/CA protocol. To the best of our knowledge, this
paper is the first rigorous theoretical study of the achievable
capacity over a multi-hop CSMA/CA based wireless network.

I. INTRODUCTION

The network capacity of importance to a multi-hop wireless
backhaul network is the total throughput traversing the given
set of ingress/egress edge nodes. The maximum network
capacity is normally coupled with optimal routing and schedul-
ing to form a network dimensioning issue [1], [2]. The conflict
graph or contention graph is the popular tool to model the
interference among different wireless links [3]–[5]. The main-
thread approach for wireless network dimensioning is to apply
a multi-commodity flow (MCF) formulation, augmented with
constraints derived from the conflict graph [1]–[3], [6], [7].

The existing MCF-based dimensioning studies mainly focus
on the independent set based formulation, where the MCF so-
lution can generates an optimal centralized scheduling (under
the assumption of a synchronized slotted system): the maximal
independent sets take turns in grabbing the channel for data
transmission, with the proportion of transmission time for each
set determined by the MCF solution. However, the maximum
throughput based on the optimal centralized scheduling is not
achievable for a network applying a distributed carrier sensing
multiple access with collision avoidance (CSMA/CA) protocol
for medium access control (MAC), say, the IEEE 802.11
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distributed coordination function (DCF). The main reason is
that collisions are inevitable for the CSMA/CA MAC due to
its nature of random access, which leads to reduced channel
utilization. It is of critical importance to develop analytical
tools for determining the maximum backhaul throughput that
is achievable over a practical CSMA/CA MAC.

In this paper, we develop a generic method to integrate
CSMA/CA MAC analysis with the MCF formulation for opti-
mal network capacity analysis by resorting to the clique-based
method. A clique contains links that mutually conflict with
each other. By considering each clique as one single-hop area,
we reveal that applying the channel utilization analysis for a
single-hop CSMA/CA area [8] to each clique gives a generic
method to correlate the MCF formulation with the CSMA/CA
MAC modeling, which readily leads to a tighter upper bound
of the network throughput over the CSMA/CA MAC. Another
contribution is a theoretical study of the relationship between
a CSMA/CA area and its associated CSMA/CA clique. A
CSMA/CA clique consists of the links incident to the nodes
in the CSMA/CA area. The CSMA/CA clique is a newly
proposed concept, different from the maximal clique. Note that
the clique focuses on the interference among links, whereas
a CSMA/CA area focuses on the interference among sending
nodes in spite of the receiver nodes. We theoretically prove that
the total normalized throughput over a CSMA/CA clique can
be transformed to that over a CSMA/CA area. Such theoretical
results provide a foundation for deriving the lower bound of
the network throughput. The third main contribution is the
theoretical proof of a sufficient condition that guarantees the
achievability of a network flow allocation over the CSMA/CA
MAC. Based on such a sufficient condition and the relationship
between a CSMA/CA clique and a maximal clique, we then
derive a lower bound of the network throughput. To the best of
our knowledge, this paper is the first rigorous theoretical study
of achievable capacity over a multi-hop CSMA/CA based
wireless network.

The remainder of this paper is organized as follows. Sec-
tion II reviews more related work. Section III summarizes the
CSMA/CA optimal operation point analysis. Section IV de-
scribes the MCF formulation for wireless backhaul networks.
Section V investigates the upper bound and lower bound of
the network capacity over the CSMA/CA MAC. Section VI
gives the concluding remarks.



II. RELATED WORK

As a popular approach to analyze the capacity region of
multi-hop wireless networks, the MCF problem under the
protocol interference model is however NP-hard in general
[3]. A rigorous NP-hardness proof is given in [10]. A lower
bound and upper bound of such an NP-hard problem can
be computed by solving a linear programming (LP) problem
under constraints based on the maximal independent sets
and the maximal cliques [3], respectively. Searching for all
the maximal independent sets or maximal cliques is still
NP-hard. Even given all the maximal independent sets or
maximal cliques, the LP MCF problem has to be solved
with exponentially many constraints to generate tight capacity
bounds. Considering the high computational complexity, there
are many efforts in developing polynomial approximation
algorithms [6], [10], [11] for the MCF problem over wireless
networks.

In this paper, our focus is not on approximation algorithms.
Instead, we study how to enhance the MCF formulation and
extend the conflict-graph based constraints to generate the
capacity region, particularly an achievable lower bound, over
the CSMA/CA MAC. Although many MCF capacity studies
[3], [10], [11] claim that the impact of 802.11 is considered,
it is in fact treated as a specific protocol interference model
to define the conflict graph for centralized scheduling. The
fundamental contribution of this paper is to derive necessary
and sufficient conditions for MCF flow allocation, which take
the CSMA/CA randomness nature into account. Note that the
advance in the polynomial approximation algorithms could be
exploited to improve the efficiency in solving our model.

III. OPTIMAL OPERATION POINT

We have developed a protocol-independent analysis in [8],
revealing that the family of CSMA/CA protocols share the
same optimal operation point where the maximum protocol
capacity is achieved. The protocol-independent analysis is
inspired by the concept of virtual slot [12], [13]. Observed
at the timescale of virtual slot, all the CSMA/CA protocols
show the same behavior that the channel alternates among
the statuses of idling, successful transmission, and collision.
Moreover, we have proved that the traffic arrival process at
each virtual slot can be accurately described or well approx-
imated by a Poisson random variable, when channel accesses
from different users are independent (e.g., in 802.11 DCF) or
weakly correlated (e.g., in 802.15.4 contention access period)
[8]. If the size variation of different types of virtual slots were
ignored, the virtual-slot system would behave stochastically
similar to a slotted ALOHA protocol. Therefore, the well-
known S-G analysis for slotted ALOHA can be extended into
a virtual slot based S-G analysis (VS S-G).

Let G denote the Poisson traffic load in a slot. The proba-
bility of seeing an idle (a successful transmission) slot pd (ps)
equals the probability that zero (a single) transmission trail
happens at a slot. That is, pd = e−G, ps = Ge−G, and the
probability of seeing a collision slot pc = 1 − Ge−G − e−G.
Let ¾, Ts, and Tc denote the lengths of virtual slots associated

with channel idling, successful transmission, and collisions,
respectively. The steady-state channel utilization Rs can be
computed as

Rs =
psTs

pd¾ + psTs + pcTc
(1)

To obtain the maximum channel utilization (equivalently, the
maximum MAC protocol capacity), we can determine the
optimal workload G∗ according to d

dGRs∣G=G∗ = 0. Let p∗d,
p∗s , and p∗c denote the values of the probabilities under the
optimal workload G∗. The maximum channel utilization can
be obtained as R∗

s =
p∗
sTs

p∗
d¾+p∗

sTs+p∗
cTc

. Let Lp denote the
payload size of a packet and C the spectrum bandwidth, the
maximum normalized throughput R∗

g can be computed as

R∗
g =

p∗sLp

C(p∗d¾ + p∗sTs + p∗cTc)
=

R∗
stp
Ts

(2)

where tp =
Lp

C represents the effective transmission time
within each successful period. The maximum normalized
throughput indicates the optimal operation point.

IV. MCF FORMULATION

We consider a single-channel wireless backhaul network,
represented as a directed graph G(N ,ℒ) with node set N and
link set ℒ. Each node, ni, has a communication range Âi and
a potentially larger interference range Â′

i. There is a directed
link lij from node ni to nj if dij ≤ Âi. The capacity of
link lij is denoted as Cij and assumed to be time invariant.
Bidirectional transmissions between two nodes are described
by two directed links, one for each direction. There are two
models, the protocol interference model and the physical
interference model [3], [9], to define the conditions for a
successful transmission. We adopt the protocol interference
model in this paper.

A. Basic MCF Formulation
Let (º, ´) denote an ingress/egress pair of the backhaul

network and Λ the set of ingress/egress pairs. We further use
xº´(i, j) to denote the portion of nº-to-n´ traffic flow that
traverses the link lij . The classic MCF formulation without
considering the wireless interference is expressed as

max
∑

(º,´)

∑

lºi∈ℒ
xº´(º, i) (3)

subject to:∑

lji∈ℒ
xº´(j, i) =

∑

lij∈ℒ
xº´(i, j),

∀(º, ´) ∈ Λ and ni ∈ N/ {nº , n´} (4)∑

liº∈ℒ
xº´(i, º) = 0, ∀(º, ´) ∈ Λ (5)

∑

l´i∈ℒ
xº´(´, i) = 0, ∀(º, ´) ∈ Λ (6)

∑

(º,´)

xº´(i, j) ≤ Cij , ∀lij ∈ ℒ (7)

xº´(i, j) ≥ 0, ∀lij ∈ ℒ and (º, ´) ∈ Λ. (8)



The formulation states that we aim at maximizing the
aggregate throughput traversing all the ingress/egress pairs,
with the five constraints [3] of flow conservation constraint (4),
source constraint (5), destination constraint (6), link constraint
(7), and nonnegative constraint (8).

B. Conflict Graph Constraints
In a conflict graph ℱ , the vertices correspond to the links in

the network graph G. According to the protocol interference
model [3], we draw an edge in the conflict graph between
vertices lij and lpq if dab ≤ Â′

a for ab = iq, qi, ip, pi, jp,
pj, jq or qj. Such a conflict relation implies that a successful
transmission over the CSMA/CA MAC (e.g., the 802.11 DCF)
requires that both the sender and the receiver are free of
interference from other nodes. Let ℐ1, ℐ2, ⋅ ⋅ ⋅ , ℐK denote all
the K maximal independent sets in ℱ , and ®u (0 ≤ ®u ≤ 1)
denote the fraction of time allocated to the independent set ℐu,
u = 1, ⋅ ⋅ ⋅ ,K. We can then add the constraints given in (9)
and (10) to the basic MCF formulation to obtain the maximum
throughput of a wireless backhaul network.

K∑
u=1

®u ≤ 1 (9)

∑

(º,´)

xº´(i, j) ≤
∑

u: lij∈ℐu

®uCij , ∀lij ∈ ℒ. (10)

The maximal independent set based solution gives a lower
bound to the network capacity [3]. The capacity is achievable
by the scheduling that each maximal independent set take turns
to transmit, with the proportion of transmission time of each
set specified by ®u.

An upper bound of the maximum network throughput can
be solved by finding all the maximal cliques and augmenting
the basic MCF formulation with the constraints that the total
usage within each maximal clique is at most 1 [3]. Suppose
that there are M maximal cliques in the conflict graph ℱ ,
denoted as C1, ⋅ ⋅ ⋅ , CM , respectively. If a link lij within a
maximal clique is allocated the transmission time of tij during
the whole clique transmission interval T , the clique constraint
can be expressed in terms of the normalized throughput as

∑

lij∈ Cu

1

Cij

∑

(º,´)

xº´(i, j) ≤ 1, u = 1, ⋅ ⋅ ⋅ ,M. (11)

V. CAPACITY REGION OVER CSMA/CA
In this section, we develop new methods to derive the upper

bound and lower bound of the backhaul network capacity over
the CSMA/CA MAC. We focus on the 802.11 DCF protocol
due to its wide application in wireless backhaul networks.

A. Upper Bound of the Capacity
Let X̂ denote the upper bound of the MCF throughput based

on the clique constraint (11). We have the following theorem
regarding a tighter upper bound of the network throughput
over the CSMA/CA MAC.

Theorem 1: A tighter upper bound of the optimal through-
put of a wireless mesh network based on a CSMA/CA MAC
protocol is F̂ = R∗

gX̂ .
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Fig. 1. CSMA/CA area,
CSMA/CA clique, and maximal
clique.

Sender Sender

CSMA/CA 
area

Fig. 2. The sender of a link outside
a CSMA/CA area.

Proof: The MCF formulation based on clique constraint of
(11) gives an upper bound of the network throughput [3].
Within each maximal clique, we can concentrate each link
into a virtual node contending for the channel access, since
simultaneous transmissions will not be successful under the
CSMA/CA protocol. Regarding such virtual nodes, the VS
S-G analysis in Section III determines that the maximum nor-
malized throughput over a maximal clique is upper-bounded
by R∗

g , when the distributed CSMA/CA MAC is applied.
We now apply the clique constraints with the maxi-

mum utilization of R∗
g to the basic MCF formulation for

max
∑

(º,´)

∑
lºi∈ℒ fº´(º, i). The flow is denoted by fº´(i, j)

to emphasize that the formulation is to find the maximum
throughput over the CSMA/CA, denoted by F̂ . Compared to
the centralized scheduling case, the clique constraint under the
CSMA/CA MAC is now expressed as

∑

lij∈ Cu

1

Cij

∑

(º,´)

fº´(i, j) ≤ R∗
g, u = 1, ⋅ ⋅ ⋅ ,M. (12)

If we define xº´(i, j) = fº´(i, j)/R
∗
g , the new MCF formula-

tion with the constraint of (12) is then transformed back to the
original clique-based MCF formulation assuming a centralized
scheduling, associated with the constraint (11). Therefore, the
optimal solutions x∗

º´(i, j) = f∗
º´(i, j)/R

∗
g and F̂ = R∗

gX̂ . ■
Obtaining a tight lower bound through clique-based MCF

formulation is much more complex than computing the upper
bound. We next study a new concept of CSMA/CA clique to
facilitate the lower bound analysis. For simplification, in the
remainder of this paper we assume that all the nodes have the
same communication range Â and interference range Â′ (≥ Â).
The carrier sensing range equals the interference range.
B. CSMA/CA Clique and CSMA/CA Area

A circle with a diameter of Â′ is termed as a CSMA/CA
area. Within a CSMA/CA area, all the nodes are within the
carrier sensing range of each other, and the transmissions from
different nodes are coordinated by the CSMA/CA protocol. It
is obvious that a CSMA/CA area defines a clique, since any
two links incident to nodes within the area conflict with each
other. The clique is termed as the clique associated with the
CSMA/CA area, or a CSMA/CA clique for convenience. Note
that a CSMA/CA area may not be large enough to cover a
maximal clique. An example is illustrated in Fig. 1, where
links lAB , lCD, and lEF form a maximal clique due to the
interference between node nA and nC , nA and nE , as well as
nC and nE . A CSMA/CA area in this scenario can at most
cover two links, and the associated CSMA/CA clique is a
subset of the maximal clique.



1) Maximum Normalized Throughput: We have the fol-
lowing lemma regarding the maximum normalized throughput
over a CSMA/CA area and the associated CSMA/CA clique.

Lemma 1: The total normalized throughput over a
CSMA/CA clique can be transformed to that over the
CSMA/CA area defining the clique, and vice versa. Thus, the
maximum normalized throughput over a CSMA/CA clique is
R∗

g .
Proof: Let AC denote the CSMA/CA area defining a clique

C. Let ni ∈ AC denote that node ni is within the CSMA/CA
area AC . The clique C consists of links {lij ∣ni ∈ AC or nj ∈
AC}. Note that it is possible that one end, particularly, the
sender node of a link belonging to the clique C is outside
AC , as shown in Fig. 2. Let T denote the time interval for
throughput measurement, and tij the total transmission time
occupied by link lij (lij ∈ C) during the time interval T .
The total normalized throughput, Rg, over the clique C can be
computed as

Rg =
1

T

∑

lij∈C
tij =

1

T

[ ∑

lij∈C
ni∈AC, nj∈AC

tij

+
∑

lij∈C
ni∈AC, nj ∕∈AC

tij +
∑

lij∈C
ni ∕∈AC, nj∈AC

tij
]

(13)

Considering that in a clique only one successful transmis-
sion is allowed at a moment, the transmission time occupied
by the sender node is equivalent occupied by the receiver node
too. Moreover, a link lij ∈ C always has a corresponding link
lji ∈ C. Then, we can continue (13) with

Rg =
1

T

[ ∑

lij∈C
ni∈AC, nj∈AC

tij +
∑

lij∈C
ni∈AC, nj ∕∈AC

(tij + tji)
]

=
1

T

∑

lij∈C,ni∈AC

t′ij =
1

T

∑

i:ni∈AC

∑

j:lij∈C
t′ij =

∑

i: ni∈AC

tni

T

(14)

where

t′ij =
{

tij if lij ∈ C, ni ∈ AC , nj ∈ AC ;
tij + tji if lij ∈ C, ni ∈ AC , nj ∕∈ AC .

(15)

tni =
∑

j:lij∈C
t′ij (16)

and tni represents the transmission time occupied by each
node ni ∈ AC . The results of (15) and (16) show that the trans-
mission time allocation in a CSMA/CA clique C, {tij ∣lij ∈ C}
can be transformed to a transmission time allocation in the
associated CSMA/CA area AC , {tni ∣ni ∈ AC}. On the other
hand, given a transmission allocation in AC , if the destination
node for each transmission is known too, the allocation then
defines a transmission time allocation for the corresponding
CSMA/CA clique C. Such an equivalent relationship, in terms
of total normalized throughput, between the CSMA/CA area
AC and the associated clique C implies that the maximum
throughput over a CSMA/CA clique equals R∗

g , under the
CSMA/CA MAC protocol. ■
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2) Achievability of Heterogeneous Rates: Although Lemma
1 indicates that the maximum throughput over a clique can be
equivalently obtained by investigating a CSMA/CA area, the
basic 802.11 DCF MAC assumes that each node is equipped
with the same backoff schemes and thus grab a fair share of
the capacity through channel contention [12]. However, for
network dimensioning, the MCF solution normally allocates
different rates to flows traversing a clique. Let ri denote the
normalized rate of a sending node ni. We have the following
lemma regarding the heterogeneous rate allocation (the proof
is ignored due to the limit of space).

Lemma 2: For 802.11 DCF MAC, any rate allocation over
a single-hop CSMA/CA area AC satisfying

∑

i: ni∈AC

ri ≤ R∗
g (17)

is achievable by differentiating the channel occupation time
upon a successful transmission, i.e., the TXOP, for different
sender nodes.

Based on the fact that TXOP differentiation is transparent
to the backoff operation, we can prove another lemma.

Lemma 3: For 802.11 DCF MAC, a throughput Rg achiev-
able over a single-hop CSMA/CA area under homogeneous
channel contention (where each node uses the same backoff
parameters and TXOP) is also achievable under any specified
heterogeneous rate allocation by applying the TXOP differen-
tiation scheme.

C. Lower Bound of the Capacity

The fundamental reason that the clique-based MCF formu-
lation gives an upper bound, which may not be achievable,
of the network capacity over the CSMA/CA MAC is that the
interference among the cliques in the multi-hop context can
not be described by the clique constraint (12). Fig. 3 illustrate
the interference between two cliques, where link lAB and link
lCD belong to clique C1; link lCD and link lEF belong to
clique C2. The interference between lCD and lEF is due to
dDE < Â′. Assume that at a certain moment, within clique
C1 only node nC is trying to access the channel. However, if
the link lEF in clique C2 is transmitting at this moment, node
nC will not be able to utilize this transmission opportunity,
although allowed in clique C1. Specifically, nC senses an idle
channel and decides to transmit (because both nodes nE and
nF are out of the carrier sensing range of nC), but the packet
delivered to node nD will be corrupted due to the transmission
on link lEF . Such an interference scenario illustrated in Fig. 3
is termed as hidden-node effect in the literature [14].



In order to obtain an achievable throughput, i.e., a lower
bound, based on the clique model, the essence is to constraint
the maximum throughput over each clique with the inter-clique
interference taken into account. Define a uniform network as
a network whose nodes are uniformly or regularly distributed
in an area. We have the following lemma.

Lemma 4: In a uniform network, with the inter-clique
interference considered, the total throughput over a CSMA/CA
clique Rg is achievable if Rg ≤ R∗

g

4 .
Proof: Lemma 1 tells that the total throughput over

a CSMA/CA clique can be equivalent to that over the
CSMA/CA area defining the clique. Lemma 3 further indicates
that the total throughput over a CSMA/CA area can be conser-
vatively evaluated by considering the homogeneous contention
case, where each node contends with the same backoff param-
eters and same TXOP. Thus, the achievable throughput over a
CSMA/CA clique is conservatively investigated here through
studying the associated CSMA/CA area, with homogeneous
channel contention from each node.

We consider a CSMA/CA area AC , which defines the
CSMA/CA clique C. Note that a CSMA/CA area is covered
by a circle with diameter Â′. Let B(AC) denotes the area of
the circle. If the nodes are uniformly distributed with a density
of ½, the number of nodes contained by AC is ½B(AC). When
the CSMA/CA area AC is independently considered, with the
same channel contention parameters, each node ni ∈ AC can
achieve the throughput of R∗

g/½B(AC) according to Lemma 2.
To analyze the interference from other cliques on clique C,

let’s consider a tagged sender node ni ∈ AC . It can be seen that
all the nodes that may interfere with ni are within the circle
Ii centered at the tagged node with a radius of Â′, as shown
in Fig. 4. A conservative condition to ensure the achievable
throughput of ni under the worst-case interference is to
consider the circle Ii as one CSMA/CA area, which implies
that any two nodes within Ii can not transmit simultaneously.
With homogeneous channel contention, a lower bound of the
achievable throughput of the tagged node ni is R∗

g/½B(Ii).
Note that the transmissions outside the area Ii can only lead
to a higher throughput for node ni. Specifically, the nodes
within Ii other than ni may be impacted by the nodes outside
Ii, resulting in a smaller channel access probability within Ii.
Nevertheless, the decrease of channel access from such nodes
implies that the tagged node ni can grab the channel with a
higher probability within Ii and achieve a throughput higher.

In a uniform network ignoring the borderline effect, all
nodes have the same stochastic behavior, and therefore the
same achievable throughput, with homogeneous channel con-
tention. Thus, the lower bound of the total achievable through-
put over a CSMA/CA area, with inter-clique interference taken
into account, is

R̃g = ½B(AC) ⋅
R∗

g

½B(Ii)
= R∗

g

¼(Â
′

2 )
2

¼Â′2 =
R∗

g

4
(18)

The lower bound of (18) ensures that Rg ≤ R∗
g/4 is achiev-

able. The achievability under heterogeneous rate allocation is
guaranteed by Lemma 3. ■

Lemma 4 provides a sufficient condition regarding the
achievable throughput over a CSMA/CA clique, under all
the possible interference cases. Based on Lemma 4, we can
establish the following theorem regarding the total throughput
over the whole network (with proof ignored).

Theorem 2: For a uniform network, a lower bound of the
optimal throughput over the CSMA/CA MAC is F̃ = 1

4 F̂ ,
where F̂ is the upper bound given in Theorem 1. Thus, the
lower bound is at least 1

4 of the maximum capacity F ∗, i.e.,
F̃ ≥ 1

4F
∗.

VI. CONCLUSION

This paper addresses the issue that the existing capac-
ity studies of wireless backhaul networks, based on MCF
formulation, assume impractical centralized scheduling and
generate capacity region that is unachievable over a practical
CSMA/CA MAC protocol. The fundamental contribution of
this paper is to derive necessary and sufficient conditions for
MCF flow allocation, which take into account the CSMA/CA
randomness nature and therefore generate a tight upper bound
and an achievable lower bound of the network capacity over
the CSMA/CA MAC. For future work, we will have further in-
depth study on the capacity region over arbitrary networks and
on polynomial algorithms to compute the achievable capacity
region over the CSMA/CA MAC.
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