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Cisco Visual Networking Index report forecasted that 
global Internet traffic would reach 1.0 ZB per year in 

2015. Huge Internet traffic, produced by popular mobile appli-
cations, web services, and social media, is a special type of big 
data that possesses the “4V characteristics” (variety, velocity, 
volume, and veracity) [1], referred to as “big network data” in 
this article. If properly managed, such data could reveal many 
opportunities and solve problems that have not been feasibly 
addressed or properly handled before.

Analysis on big network data is challenging since one has 
to handle a massive and rapidly increasing amount of data 
from possibly many different sources. The current solution for 
inspection of semantics is to record everything and then do 
post-processing and data mining offline. This is not a scalable 
solution. Lower-level online (real-time) traffic identification 
using deep packet inspection (DPI) and deep flow inspection 
(DFI) based on protocols, applications, and so on is coarse-
grained and inflexible, and will not give sufficient insight into 
users’ behavior and preferences. In this article we describe an 
approach to gain deep understanding of users’ behaviors and 
preferences extracted from protocol data units (PDUs) and 
the relationship between PDUs, and the agility to easily sup-
port various analysis purposes. 

Specifically, we propose deep semantics inspection (DSI), 
where semantics is defined as the meanings and indications 
of a user’s intent behind big network data. Relying on deep 
understanding of the internal relations between PDUs and 
their semantics, DSI extracts concise but descriptive meanings 
from the data at wire speed. 

We use the example in Fig. 1 to illustrate how DSI, DPI/
DFI, and offline data mining solutions work. There are two 
users: one uses a laptop accessing Amazon and Facebook, 
and the other activates iPhone applications for Facebook and 
WeChat. 

DSI discloses fine-grained information about the user: for 

the example in Fig. 1, after using Chrome on an iPhone to 
view a Sony TV set on Amazon on January 5, 2015, the user 
purchased the viewed TV set. In other words, leveraging on 
the descriptive information of “who, when, what, how, ...,” DSI 
keeps the flexibility to further deduce more comprehensive 
analyses such as user profiling, discovering preference of TV 
set brands, mobile devices, and browsers’ market share. All 
these tasks can be completed at wire speed. This enhances the 
output from DPI, which only conducts protocol or applica-
tion-level inspection (e.g., HTTP flow, visiting Amazon/Face-
book, and using WeChat). The content providers, Amazon, 
Facebook, and WeChat in this example, would employ data 
mining on logs for various analyses, but normally in an offline 
manner. In addition, DSI performs on raw Internet traffic, 
while the offline methods need to access the proprietary server 
logs, which is usually only practical for individual content pro-
viders or data holders such as Google or Amazon. 

Inspecting Semantics over Big Network Data
In this section, we present in detail the features and the design 
goals of DSI. To compare with related work, the design spaces 
are illustrated in Table 1. 

DSI should be operating at (close to) wire speed. The wire 
speed in the core has been continuously increasing; mean-
while, the volume of network data has dramatically increased. 
Combined with the need to correlate data from different net-
work levels and sources, this poses great challenges to extract 
desired/useful values from low-value-density data. Data mining 
methods and tools are able to get deep understanding of static 
big data, such as offline logs or semantic web, but they are 
usually not designed for streaming processing on big network 
data. Even when real-time analysis is not strictly needed for 
some cases, an offline analysis is always limited by storage for 
big network data, because the analysis capabilities are slower 
than the rate at which data is produced [6]. As a result, DSI 
explores a more appealing approach to only extract and store 
the information that is useful for further analysis [2]. 

DSI is designed to exhibit fine-grained semantics. Extract-
ing and combining data from the network, application, and 
semantic levels gives different insight and information about 
the state of the network (e.g., for management purposes), and 
understanding and knowledge about the users’ behavior and 
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preferences (e.g., for service customization purpos-
es). DSI tries to report more logical intents about 
who, how, when, why, etc., besides the “what is a 
packet/flow” question answered by DPI/DFI. More 
and more applications integrate multiple func-
tionalities or contain quite different contents with 
diverse data formats. As one example, people use 
Facebook to share pictures, update timelines, chat 
with friends, and so on. As another example, users 
visit Amazon’s web page, view product descriptions 
and other users’ comments, compare prices, buy 
items, and so on. DSI reports the specific (user) 
behaviors instead of protocols or applications, 
unlike what DPI/DFI does. 

DSI should be agile to support various analy-
sis targets based on the same input data. In other 
words, the output semantics of DSI should allow 
the flexibility of being redefined to obtain the 
desired information. This is similar to how we clas-
sify a flow by some unique features: a specific flow 
can, for example, be a series of packets with the 
same destination IP address, or packets with the 
same source-destination IP address pair. In fact, DSI out-
puts different granularity semantics in the example of Fig. 1, 
from preliminary semantics like “who use(s) what visit where 
on when,” to more complex semantics like “market share of 
browsers.” On the contrary, DPI and DFI are usually fixedly 
designed with specific protocols and do not have the ability to 
flexibly change the identification purpose. 

To the best of our knowledge, the DSI approach is the first 
to extract semantics from big network data in a fine-grained, 
flexible, and online manner. 

Design and Implementation of a DSI System
We have designed and implemented a DSI system called 
Semantics On-Line Intent Detection (SOLID) as shown in 
Fig. 2. For design details, please refer to [15].

Data Flow of SOLID
Basically, SOLID deduces the semantics over three main stag-
es. It first transforms the raw PDU into an “application sketch” 
(app-sketch), which is a set of <field: value> pairs (Time: Jan. 
5, 2015; Host: amazon.com; Action: view item, etc.). Next, 
SOLID works on the app-sketches to reveal the “behavior 
sketch” (behav-sketch). The behav-sketch is a set of minimized 
meaningful structured data describing user behavior (e.g., a 
user views a Sony TV set on Amazon at time, day, month, year 
using iPhone). Finally, we can infer the high-level semantics 
by applying user-flexible analysis over the large group of user 
behaviors. A detailed data flow example is shown on the right 
side of Fig. 2. With the processing in SOLID, the data volume 
decreases tremendously step by step (PDU>app-sketch>be-
hav-sketch>semantics). During this process, we have designed 
expressive specification, agile user space, and fast kernel space 
to achieve the three aforementioned goals, respectively.

Expressive Specification
We propose two specifications to express the applications and 
behaviors. First, app-spec is used to extract app-sketch, which is 
a predefined specification of the application protocols to parse a 
packet up to the application layer. It is generally in the form of 
a Backus-Naur form (BNF) with a set of production rules. The 
bottom left of Fig. 2 is an example of app-spec, which consists of 
several production rules within header and payload to illustrate 
an HTTP protocol. More specifically, the production starts from 
S, which produces the HTTP request Q and the response E. Q 

further produces the request line R and a set of header fields 
F. Following a similar process, we can eventually get a whole 
HTTP protocol with the interested information, such as the 
catalog of Amazon items. In addition, behav-spec is employed 
to extract the interesting properties from app-sketch, which is 
listed on the left side of Fig. 2 (the app-spec). The behav-spec 
is a set of key-value pairs indicating the deduced information. 
For example, we match the User-Agent field in HTTP-Amazon 
protocol to check whether this request was performed by the 
Chrome browser on an iPhone (User-Agent: iPhone.*Chrome). 

The SOLID system relies on the app-spec and behav-spec 
for accurate results. It is easy to generate the specifications for 
public and well defined described layer 7 (L7) protocols, but 
for applications using their own proprietary protocols in the 
application layer, elaborate efforts are required to synthesize 
the specifications. The following principles are used to gener-
ate specifications in SOLID deployment.
•	Standard public protocols often clearly define the meanings 

of the fields and values. For instance, in HTTP, the Host 
field is often used to differentiate web applications, and the 
behaviors can be inferred from the URI field. Other fields 
such as User-Agent and Referrer are also used to describe 
the app-spec and behav-spec.

•	“Proprietary protocols” are commonly defined with a user 
payload header in each application message, which are indi-
cations of user semantics. A proprietary protocol usually 
contains a protocol identifier (to distinguish it from other 
protocols), a user identifier (to indicate different users), and 
a behavior identifier (to denote the user action) with special 
separators (to separate different fields and the real data).

•	For an efficient handling process on the server side, applica-
tions tend to use structured format to carry their semantics 
(e.g., JSON/XML). These marked up languages are expres-
sive and can be resolved easily. 

Figure 1. An illustrative example to compare DSI and DPI/DFI.

PDU1

HTTP flow/visiting Amazon/
facebook

Visit Sony TV set on Amazon.com using iPhone
Purchase the TV set

Video-chat using WeChat
Share a picture with friends in WeChat

DSI

DPI/DFI 

Browser market
share

User profiling

Using WeChat

Log

Log

Log

Offline data mining on logs 
within each content provider

Table 1. Design space of DSI.

DPI/DFI Data mining tools DSI

Fine-grained analysis O P P

Flexibility O P P

Wire speed P O P
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Agile User Space

The architectural design of SOLID is illustrated in the middle 
column of Fig. 2. We view the top layer as the user space, 
which issues the flexibility of the system and fills the gap 
between behavior sketch and semantics. The data volume is 
significantly reduced from the raw PDU to the behavior sketch 
in the kernel, and the unstructured big network data has been 
normalized into a unified format. In the user space, SOLID 
finally invokes the scenario-dependent analysis to conduct the 
applicable semantics. 

To be specific, SOLID abstracts a data set between the 
kernel and the user space as the behavior sketches (south-
bound interface), and meanwhile provides a set of unified 
application programming interfaces (APIs) in the user space 
to query the sketches from comprehensive semantics calcula-
tions (northbound interface). Tools of data mining and infor-
mation visualization can be integrated into the user space, and 
the requirement is to comply with the unified interfaces. For 
example, by clustering a large group of user behaviors, we can 
obtain the correlations of different applications. 

In general, with the minimized behavior sketches, we can 
conduct various analyses in the user space in an agile way. 
The user space of SOLID provides the flexibility for different 
applications to produce their own specific semantics based 
on the unique framework of SOLID, as well as the behavior 
sketch input. In the next section, we present three practical 
scenarios to demonstrate the potential of the user space. 

Fast Kernel Space
The design of the kernel space determines the performance of 
SOLID in achieving the wire speed processing goal. 

The bottom layer in the SOLID architecture, the semantics 
parsing engine (SPE), resolves the reassembled PDUs into 
the application sketch according to the app-specs. The SPE 
transforms the PDUs into the structured application sketch 
and reduces the data volume by ignoring the irrelevant pay-
load. The SPE in SOLID first combines multiple app-specs 

into a distinguishable automaton, and a one-time parsing on 
this automaton can identify the protocol and extract the field 
values simultaneously to ensure the high-speed processing of 
the SPE. Please refer to our previous work [7] for the detailed 
design of the parsing method. Previous works are not sufficient 
for our purpose. For example, Binpac [8] extracts “http-re-
quest,” “http-request-header,” and “http-response-body,” but 
cannot go deep into the payload of the response. In addition, 
the flexible definitions result in overlaps between multiple 
app-specs, since they may be based on the same L7 protocols. 
Other related works identify and parse protocols separately [8, 
9]. In particular, they either sequentially parse each app-spec, 
which is obviously not scalable, or set an inaccurate prior iden-
tifier to identify the protocol first, which risks the accuracy of 
the whole system [7]. 

Next, a semantics matching engine (SME) is the middle 
layer of the SOLID design, and compares the application 
sketch with the predefined behav-spec and outputs the behav-
ior sketch. The DSI system is expected to scale with emerging 
specifications resulting from the growth of new applications/
functions. We proposed rule organized optimal matching 
(ROOM) in [10] to improve the matching performance-cost 
ratio by 1.5–23 times. The idea is to only activate a small sub-
set of rules that could possibly be matched in each field, which 
avoids the intersection calculation of the candidate matched 
rules from each field, and increases the memory consumption 
by splitting one large matching structure into several much 
smaller ones. We later extended ROOM to MP-ROOM [11] 
to support multiple PDUs for more complex behav-specs, 
which is used as the SME of SOLID. An intrusion detection 
system (IDS) [12] also has a matching component to detect 
intrusions, but it cannot be directly leveraged in SOLID for 
two reasons. First, IDS is designed for security issues and is 
not flexible enough to work with the behav-spec. Although the 
number of intrusions is increasing, the growing speed of the 
matching rules is much slower because one vulnerability-based 
rule can express multiple instructions [12]. Second, only a few 
flows related to intrusions would be matched in an IDS, but 

Figure 2. The system architecture of SOLID. The specifications, system architecture, and data flow are shown on the left, in the 
middle, and on the right, respectively
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every flow should have a match in SOLID, increasing the pro-
cessing pressure of the SME. 

Practical Cases
SOLID has been deployed in several practical scenarios, and 
three representative ones are presented below. These cases 
are derived from on-line analysis over the big network data 
in a network service provider (NSP)’s network, a university’s 
network, and a company’s intranet, respectively. There may 
be alternative ways to achieve the goal for each of the scenar-
ios, but the merit shown here is the flexibility of SOLID: The 
unique framework and the same kernel space can be utilized by 
different applications to satisfy various analysis requirements. 

Application Diagnosis
Figure 3 shows the deployment of SOLID in the intranet envi-
ronment for diagnosis. There is a web service provided by 
three equal servers (S1–S3), and N1 is a load balancing node 
dispatching requests to the servers according to CPU utiliza-
tions in S1–S3. The SOLID system analyzes the mirrored net-
work data in and out of N1 and reports any exceptions. In this 
case, the diagnosis application in the user space is input with 
processing behavior between each server and users at wire 
speed and outputs the semantics whether one server works 
regularly or not according to the behavior transitions. The pro-
cessing logic in the user space of SOLID continuously moni-
tors the network traffic transactions’ states between the servers 
and the users (behavior sketch), and based on this, it detects 
the abnormal transitions between states and locates the causes 
of (potential) problems. 

One day during the deployment of SOLID, S2 failed to 
respond the correct data due to a disk error. S2 could not pro-
vide any service, but N1 kept on dispatching new requests to 
S2 due to its low CPU utilization. Traditional diagnostic tools 
did not activate any alarm in this case, because the network 
interface of S2 was still up and the CPU/memory utilization 
was normal. In contrast, SOLID provided higher-level intelli-
gence with app-spec and behav-spec, and reported in this case 

about the incomplete transaction of S2. As indicated in the 
bottom part of Fig. 3, SOLID monitored three behaviors in 
the servers. Normal nodes S1 and S3 experienced large success 
rates and small response times, while S2 failed to respond to 
behavior 2 and did not trigger the request of behavior 3.

Consulting Analysis
Traditionally, consulting companies use host-based methods, 
such as embedding plugins, to collect data across different 
content providers (CPs), which, however, can easily be pollut-
ed by the unstable proportions of users/applications using such 
methods.

SOLID is able to draw a macro picture of the operating sit-
uation in an NSP’s network. Here we list one practical exam-
ple, where SOLID filters out the access traffic of three video 
CPs in the NSP’s network and generates the statistics in detail. 
The output semantics in this case is the competition analysis 
based on the statistics of behavior sketches.

Figure 4a shows the overview of the traffic and user share 
of the three CPs, where multiple page views from a single 
IP address only contribute one count. CP3 attracts the most 
users with the least traffic. The dominant user share infers 
its advantages in attracting users, but the low traffic raises a 
potential problem, as does how to make users stick to it. To 
understand the problem better, Fig. 4b shows the statistics of 
CP3 in detail]. The “VOD” channel attracts most of the users, 
but does not produce very much traffic. In other words, users 
do not pay much time or money on watching the whole video 
but just glance at them. An implication is that there could be 
a risk of losing users if CP3 cannot provide interesting/attrac-
tive content. In addition, Fig. 4c illustrates the users’ clicking 
pattern in CP3’s VOD channel. Each circle is a web page, and 
its diameter is proportional to the page views on this page. We 
could infer many suggestions from this graph: Which video 
attracts the most users? How many users actually pay for the 
video when they jump into the detailed descriptions? In this 
case, users fall away on WebPage2, which lowers the traffic 
on WebPage4. Usually, CP can perform such analysis with the 
web logs individually, but SOLID can do such mining at the 

Figure 3. SOLID for diagnostic purposes.
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network side for a much quicker response. More importantly, 
an NSP can compare the data from multiple CPs in its net-
work, which is the advantage over the existing offline analysis 
on the weblogs from a single CP.

Correlation Analysis
The interrelationships between different applications are com-
plex, since the developers may integrate diverse functional-
ities to enhance them. As a result, some of them overlap with 
each other: the QQ Messenger (the most popular IM client in 
China) promotes news to its users and Twitter as a social net-
work service (SNS) platform supporting one-to-one chatting. 
On the other hand, some applications are complementary: a 
news feed application can share information with your friends 
on QQ or Twitter. With the correlation analysis performed by 
the network provider, the output semantics can help better 
understand the user preferences.

We demonstrate one-day frequencies of several popular 
applications in an NSP’s network and evaluate their correlations 
in Fig. 5, where the X and Y axes are the normalized frequen-
cies of using the corresponding applications. Figure 5a shows 
the positive correlation between QQ and Tencent Microblog. 
Since QQ has embedded some functions of Tencent Microblog, 
Tencent Microblog can gain popularity from QQ. Figure 5b 
shows the negative correlation between Weibo and Tencent 
Microblog. From the figure, we have the following observations:
1.	The two products are competitors in the microblog field. 
2.	They both have strong user loyalty (i.e., most users only use 

one of them and stay with it).
We believe such reports are valuable to the related companies 
and vendors for them to drive the right business decisions.

Performance Evaluation
Although SOLID outputs consistent and solid results, as 
demonstrated above, we aim to test the potential processing 
capacity and overhead. We evaluate SOLID’s kernel space 
on an x86 platform with 12-core Xeon E5-2620 2 GHz and 32 
GB memory. We preload two real traces with their original 
segment orders. One was captured from the campus network 
of a university in China obtaining 4.5 GB traffic. The other 7.5 
GB trace was collected at a radio network controller (RNC) 
in Hangzhou, China. We implement 38 application specifi-
cations, including seven catalogs of the applications, such as 
SNS, media, and online shopping. We further give 1048 behav-
ior specifications for the evaluations.

The single thread implementation of SOLID achieves 3.0 
Gb/s and 2.7 Gb/s with the two real traces, respectively (i.e., 
about 1.7 times faster than NetShield [12]). It is reported in 
[12] that NetShield reaches an analysis speed of 11 Gb/s on a 
DARPA trace, while the throughput of SOLID on the same 
trace is 16.9 Gb/s. With multiple-thread evaluation using 10 
cores, SOLID’s throughput is 17.2 Gb/s for the first real trace 

and 15.9 Gb/s for the second. Considering that the through-
put of NetShield is measured without reassembly work and 
only for HTTP with fewer (794) rules, we believe that SOLID 
would achieve better performance than NetShield in a real 
network with parallel acceleration.

The memory costs scale with the number of cores. When 10 
cores are used, the memory cost varies between 708 MB and 
839 MB during the test with different real traces. In the exper-
iments, the compression ratio between the volume of raw big 
network data and the size of user sketch reaches 1216~1362. 
As a result, the data volume for further user-defined high-level 
analysis can be significantly reduced to bridge the aforemen-
tioned growing rate gap over the big network data. 

Discussions
This article introduces the concept of deep semantics inspec-
tion, as well as its system framework to analyze big network 
data. As an initial work of DSI, there are several limitations 
and open questions that need to be explored in the future. 

•The app-sketch and behav-sketch are extracted by app-
spec and behav-spec, which are now manually generated 
according to the aforementioned principle. It is highly desired 
to study the (semi-) automation of this process, especially 
when the application changes frequently. A previous study [13] 
investigated the automatic generation of the string/regex-based 
specifications, which yield insights for this problem. 

•Current design in this article is not capable to ana-
lyze encrypted traffic. Technically, using DSI over the raw 
unencrypted traffic by decoding the SSL protocol is feasible 
through shadow agent nodes. Here, we remark that abuse 
of DSI allowing cross-referencing of an individual’s Inter-
net activities is socially controversial. The inspection of each 
individual is usually forbidden due to privacy protection, but 
the knowledge of the macro activities should be helpful, and 
government and intranet censorship always exists legally. How 
to make a balance between traffic analysis and privacy is an 
interesting topic, and a recent work, BlindBox, inspecting the 
encrypted traffic is viewed as a start [14].

•The behav-sketch is the interface between the kernel 
and user space. A concise and efficient abstraction should be 
carefully designed. A simple illustration of vast ontology and 
imprecise concepts would be a nightmare. Starting from the 
study of minimized but descriptive enough sketch categories, 
like who, when, where, subjects, objectives, actions, and so on, 
would be feasible.

Conclusion
In this article, we advocate the inspection of semantics over 
big network data. DSI/SOLID is designed to capture, analyze, 
and present the semantics of user intent by gathering unstruc-
tured data into a unified framework. Three real cases leverag-

Figure 4. The overview and detailed analysis of the three CPs with SOLID: a) the overview of users and the traffic volume of 
the three CPs; b) detailed analysis of CP3 (most users did not finish watching the videos); c) the clicking timeline for the VOD 
channel in CP3. Many users fall away on WebPage2.
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ing DSI/SOLID, as well as performance experiments on high 
throughput and efficient memory usage, have demonstrated 
the usage and feasibility of DSI. 
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Figure 5. The application correlation analysis: a) The positive correlation between QQ and Tencent Microblog: b) the negative 
correlation between Weibo and Tencent Microblog.
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