
18 IEEE Network • January/February 20160890-8044/16/$25.00 © 2016 IEEE

Cisco Visual Networking Index report forecasted that
global Internet traffic would reach 1.0 ZB per year in

2015. Huge Internet traffic, produced by popular mobile appli-
cations, web services, and social media, is a special type of big
data that possesses the “4V characteristics” (variety, velocity,
volume, and veracity) [1], referred to as “big network data” in
this article. If properly managed, such data could reveal many
opportunities and solve problems that have not been feasibly
addressed or properly handled before.

Analysis on big network data is challenging since one has
to handle a massive and rapidly increasing amount of data
from possibly many different sources. The current solution for
inspection of semantics is to record everything and then do
post-processing and data mining offline. This is not a scalable
solution. Lower-level online (real-time) traffic identification
using deep packet inspection (DPI) and deep flow inspection
(DFI) based on protocols, applications, and so on is coarse-
grained and inflexible, and will not give sufficient insight into
users’ behavior and preferences. In this article we describe an
approach to gain deep understanding of users’ behaviors and
preferences extracted from protocol data units (PDUs) and
the relationship between PDUs, and the agility to easily sup-
port various analysis purposes.

Specifically, we propose deep semantics inspection (DSI),
where semantics is defined as the meanings and indications
of a user’s intent behind big network data. Relying on deep
understanding of the internal relations between PDUs and
their semantics, DSI extracts concise but descriptive meanings
from the data at wire speed.

We use the example in Fig. 1 to illustrate how DSI, DPI/
DFI, and offline data mining solutions work. There are two
users: one uses a laptop accessing Amazon and Facebook,
and the other activates iPhone applications for Facebook and
WeChat.

DSI discloses fine-grained information about the user: for

the example in Fig. 1, after using Chrome on an iPhone to
view a Sony TV set on Amazon on January 5, 2015, the user
purchased the viewed TV set. In other words, leveraging on
the descriptive information of “who, when, what, how, ...,” DSI
keeps the flexibility to further deduce more comprehensive
analyses such as user profiling, discovering preference of TV
set brands, mobile devices, and browsers’ market share. All
these tasks can be completed at wire speed. This enhances the
output from DPI, which only conducts protocol or applica-
tion-level inspection (e.g., HTTP flow, visiting Amazon/Face-
book, and using WeChat). The content providers, Amazon,
Facebook, and WeChat in this example, would employ data
mining on logs for various analyses, but normally in an offline
manner. In addition, DSI performs on raw Internet traffic,
while the offline methods need to access the proprietary server
logs, which is usually only practical for individual content pro-
viders or data holders such as Google or Amazon.

Inspecting Semantics over Big Network Data
In this section, we present in detail the features and the design
goals of DSI. To compare with related work, the design spaces
are illustrated in Table 1.

DSI should be operating at (close to) wire speed. The wire
speed in the core has been continuously increasing; mean-
while, the volume of network data has dramatically increased.
Combined with the need to correlate data from different net-
work levels and sources, this poses great challenges to extract
desired/useful values from low-value-density data. Data mining
methods and tools are able to get deep understanding of static
big data, such as offline logs or semantic web, but they are
usually not designed for streaming processing on big network
data. Even when real-time analysis is not strictly needed for
some cases, an offline analysis is always limited by storage for
big network data, because the analysis capabilities are slower
than the rate at which data is produced [6]. As a result, DSI
explores a more appealing approach to only extract and store
the information that is useful for further analysis [2].

DSI is designed to exhibit fine-grained semantics. Extract-
ing and combining data from the network, application, and
semantic levels gives different insight and information about
the state of the network (e.g., for management purposes), and
understanding and knowledge about the users’ behavior and

Abstract
Deep semantics inspection (DSI), proposed in this article, reveals the semantics
behind big network data on the fly. The key idea of DSI is to obtain a sketch of
user behavior at wire speed, with a size several orders of magnitude smaller than
that of raw data. Then semantics analysis is applied to the obtained sketch. To
demonstrate the use of DSI, this article also presents several practical user scenarios
leveraging on the DSI system designed.

Deep Semantics Inspection over
Big Network Data at Wire Speed

Chengchen Hu, Hao Li, Yuming Jiang, Yu Cheng, and Poul Heegaard

Chengchen Hu and Hao Li are with Xi’an Jiaotong University.

Yuming Jiang and Poul Heegaard are with the Norwegian University of
Science and Technology.

Yu Cheng is with Illinois Institute of Technology.

IEEE Network • January/February 2016 19

preferences (e.g., for service customization purpos-
es). DSI tries to report more logical intents about
who, how, when, why, etc., besides the “what is a
packet/flow” question answered by DPI/DFI. More
and more applications integrate multiple func-
tionalities or contain quite different contents with
diverse data formats. As one example, people use
Facebook to share pictures, update timelines, chat
with friends, and so on. As another example, users
visit Amazon’s web page, view product descriptions
and other users’ comments, compare prices, buy
items, and so on. DSI reports the specific (user)
behaviors instead of protocols or applications,
unlike what DPI/DFI does.

DSI should be agile to support various analy-
sis targets based on the same input data. In other
words, the output semantics of DSI should allow
the flexibility of being redefined to obtain the
desired information. This is similar to how we clas-
sify a flow by some unique features: a specific flow
can, for example, be a series of packets with the
same destination IP address, or packets with the
same source-destination IP address pair. In fact, DSI out-
puts different granularity semantics in the example of Fig. 1,
from preliminary semantics like “who use(s) what visit where
on when,” to more complex semantics like “market share of
browsers.” On the contrary, DPI and DFI are usually fixedly
designed with specific protocols and do not have the ability to
flexibly change the identification purpose.

To the best of our knowledge, the DSI approach is the first
to extract semantics from big network data in a fine-grained,
flexible, and online manner.

Design and Implementation of a DSI System
We have designed and implemented a DSI system called
Semantics On-Line Intent Detection (SOLID) as shown in
Fig. 2. For design details, please refer to [15].

Data Flow of SOLID
Basically, SOLID deduces the semantics over three main stag-
es. It first transforms the raw PDU into an “application sketch”
(app-sketch), which is a set of <field: value> pairs (Time: Jan.
5, 2015; Host: amazon.com; Action: view item, etc.). Next,
SOLID works on the app-sketches to reveal the “behavior
sketch” (behav-sketch). The behav-sketch is a set of minimized
meaningful structured data describing user behavior (e.g., a
user views a Sony TV set on Amazon at time, day, month, year
using iPhone). Finally, we can infer the high-level semantics
by applying user-flexible analysis over the large group of user
behaviors. A detailed data flow example is shown on the right
side of Fig. 2. With the processing in SOLID, the data volume
decreases tremendously step by step (PDU>app-sketch>be-
hav-sketch>semantics). During this process, we have designed
expressive specification, agile user space, and fast kernel space
to achieve the three aforementioned goals, respectively.

Expressive Specification
We propose two specifications to express the applications and
behaviors. First, app-spec is used to extract app-sketch, which is
a predefined specification of the application protocols to parse a
packet up to the application layer. It is generally in the form of
a Backus-Naur form (BNF) with a set of production rules. The
bottom left of Fig. 2 is an example of app-spec, which consists of
several production rules within header and payload to illustrate
an HTTP protocol. More specifically, the production starts from
S, which produces the HTTP request Q and the response E. Q

further produces the request line R and a set of header fields
F. Following a similar process, we can eventually get a whole
HTTP protocol with the interested information, such as the
catalog of Amazon items. In addition, behav-spec is employed
to extract the interesting properties from app-sketch, which is
listed on the left side of Fig. 2 (the app-spec). The behav-spec
is a set of key-value pairs indicating the deduced information.
For example, we match the User-Agent field in HTTP-Amazon
protocol to check whether this request was performed by the
Chrome browser on an iPhone (User-Agent: iPhone.*Chrome).

The SOLID system relies on the app-spec and behav-spec
for accurate results. It is easy to generate the specifications for
public and well defined described layer 7 (L7) protocols, but
for applications using their own proprietary protocols in the
application layer, elaborate efforts are required to synthesize
the specifications. The following principles are used to gener-
ate specifications in SOLID deployment.
•	Standard public protocols often clearly define the meanings

of the fields and values. For instance, in HTTP, the Host
field is often used to differentiate web applications, and the
behaviors can be inferred from the URI field. Other fields
such as User-Agent and Referrer are also used to describe
the app-spec and behav-spec.

•	“Proprietary protocols” are commonly defined with a user
payload header in each application message, which are indi-
cations of user semantics. A proprietary protocol usually
contains a protocol identifier (to distinguish it from other
protocols), a user identifier (to indicate different users), and
a behavior identifier (to denote the user action) with special
separators (to separate different fields and the real data).

•	For an efficient handling process on the server side, applica-
tions tend to use structured format to carry their semantics
(e.g., JSON/XML). These marked up languages are expres-
sive and can be resolved easily.

Figure 1. An illustrative example to compare DSI and DPI/DFI.

PDU1

HTTP flow/visiting Amazon/
facebook

Visit Sony TV set on Amazon.com using iPhone
Purchase the TV set

Video-chat using WeChat
Share a picture with friends in WeChat

DSI

DPI/DFI

Browser market
share

User profiling

Using WeChat

Log

Log

Log

Offline data mining on logs
within each content provider

Table 1. Design space of DSI.

DPI/DFI Data mining tools DSI

Fine-grained analysis O P P

Flexibility O P P

Wire speed P O P

IEEE Network • January/February 201620

Agile User Space

The architectural design of SOLID is illustrated in the middle
column of Fig. 2. We view the top layer as the user space,
which issues the flexibility of the system and fills the gap
between behavior sketch and semantics. The data volume is
significantly reduced from the raw PDU to the behavior sketch
in the kernel, and the unstructured big network data has been
normalized into a unified format. In the user space, SOLID
finally invokes the scenario-dependent analysis to conduct the
applicable semantics.

To be specific, SOLID abstracts a data set between the
kernel and the user space as the behavior sketches (south-
bound interface), and meanwhile provides a set of unified
application programming interfaces (APIs) in the user space
to query the sketches from comprehensive semantics calcula-
tions (northbound interface). Tools of data mining and infor-
mation visualization can be integrated into the user space, and
the requirement is to comply with the unified interfaces. For
example, by clustering a large group of user behaviors, we can
obtain the correlations of different applications.

In general, with the minimized behavior sketches, we can
conduct various analyses in the user space in an agile way.
The user space of SOLID provides the flexibility for different
applications to produce their own specific semantics based
on the unique framework of SOLID, as well as the behavior
sketch input. In the next section, we present three practical
scenarios to demonstrate the potential of the user space.

Fast Kernel Space
The design of the kernel space determines the performance of
SOLID in achieving the wire speed processing goal.

The bottom layer in the SOLID architecture, the semantics
parsing engine (SPE), resolves the reassembled PDUs into
the application sketch according to the app-specs. The SPE
transforms the PDUs into the structured application sketch
and reduces the data volume by ignoring the irrelevant pay-
load. The SPE in SOLID first combines multiple app-specs

into a distinguishable automaton, and a one-time parsing on
this automaton can identify the protocol and extract the field
values simultaneously to ensure the high-speed processing of
the SPE. Please refer to our previous work [7] for the detailed
design of the parsing method. Previous works are not sufficient
for our purpose. For example, Binpac [8] extracts “http-re-
quest,” “http-request-header,” and “http-response-body,” but
cannot go deep into the payload of the response. In addition,
the flexible definitions result in overlaps between multiple
app-specs, since they may be based on the same L7 protocols.
Other related works identify and parse protocols separately [8,
9]. In particular, they either sequentially parse each app-spec,
which is obviously not scalable, or set an inaccurate prior iden-
tifier to identify the protocol first, which risks the accuracy of
the whole system [7].

Next, a semantics matching engine (SME) is the middle
layer of the SOLID design, and compares the application
sketch with the predefined behav-spec and outputs the behav-
ior sketch. The DSI system is expected to scale with emerging
specifications resulting from the growth of new applications/
functions. We proposed rule organized optimal matching
(ROOM) in [10] to improve the matching performance-cost
ratio by 1.5–23 times. The idea is to only activate a small sub-
set of rules that could possibly be matched in each field, which
avoids the intersection calculation of the candidate matched
rules from each field, and increases the memory consumption
by splitting one large matching structure into several much
smaller ones. We later extended ROOM to MP-ROOM [11]
to support multiple PDUs for more complex behav-specs,
which is used as the SME of SOLID. An intrusion detection
system (IDS) [12] also has a matching component to detect
intrusions, but it cannot be directly leveraged in SOLID for
two reasons. First, IDS is designed for security issues and is
not flexible enough to work with the behav-spec. Although the
number of intrusions is increasing, the growing speed of the
matching rules is much slower because one vulnerability-based
rule can express multiple instructions [12]. Second, only a few
flows related to intrusions would be matched in an IDS, but

Figure 2. The system architecture of SOLID. The specifications, system architecture, and data flow are shown on the left, in the
middle, and on the right, respectively

Semantic
parsing engine

Semantic
matching engine

Data
mining Visualization

User space

Custom
analysis

App-specs

Behav-specs

Application
sketch

PDU

Behavior
sketch

Semantics

Kernel space

GET /dp/B00HPMCO46/ HTTP/
1.1\r\nHost: amazon.com\r\
nUser-Agent: Mozilla/
5.0AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/31.0.1650\r\
n\r\n<html> </html>

Method: GET
URI: dp/B00HPMCO46/
U-A: Mozilla/5.0 AppleWebKit/
 537.36 Chrome/31.0.1650.
Time: Jan. 5, 2015
Host: Amazon.com
-Action: view item
--- Goods: TV set
----- Brand: Sony

A user visits the Sony TV set on Amazon
at time, day, month, year using iPhone

-Users always visit Amazon at night
-The most popular TV set brand is Sony
-2% users purchase the Sony TV set after
viewing the details
-...

S Q E
Q R F CRLF

R (GET|POST|PUT) V HTTP\/1.1 CRLF

F HOST: www.amazon.com CRLF F

F <key,1,K> <value, 1, V> CRLF F

F CRLF

K V :

V

[^CRLF]

E

HTTP [0-9]{3} V CRLF F HTML

HTML

<html> BODY </html>

BODY

<ul id=subnav> CAT
CAT <key_n, 1, Catalog><value, 1, V>

Protocol HTTP-Amazon

URI: \/dp\/
User-Agent: iPhone.*Chrome

Catalog: TV & home theater

Brand: Sony

Case-dependent analysis requirements:

- What is the favorite time for user viewing Amazon

- What is the top brands of TV sets?

- How many users really purchase the item?

IEEE Network • January/February 2016 21

every flow should have a match in SOLID, increasing the pro-
cessing pressure of the SME.

Practical Cases
SOLID has been deployed in several practical scenarios, and
three representative ones are presented below. These cases
are derived from on-line analysis over the big network data
in a network service provider (NSP)’s network, a university’s
network, and a company’s intranet, respectively. There may
be alternative ways to achieve the goal for each of the scenar-
ios, but the merit shown here is the flexibility of SOLID: The
unique framework and the same kernel space can be utilized by
different applications to satisfy various analysis requirements.

Application Diagnosis
Figure 3 shows the deployment of SOLID in the intranet envi-
ronment for diagnosis. There is a web service provided by
three equal servers (S1–S3), and N1 is a load balancing node
dispatching requests to the servers according to CPU utiliza-
tions in S1–S3. The SOLID system analyzes the mirrored net-
work data in and out of N1 and reports any exceptions. In this
case, the diagnosis application in the user space is input with
processing behavior between each server and users at wire
speed and outputs the semantics whether one server works
regularly or not according to the behavior transitions. The pro-
cessing logic in the user space of SOLID continuously moni-
tors the network traffic transactions’ states between the servers
and the users (behavior sketch), and based on this, it detects
the abnormal transitions between states and locates the causes
of (potential) problems.

One day during the deployment of SOLID, S2 failed to
respond the correct data due to a disk error. S2 could not pro-
vide any service, but N1 kept on dispatching new requests to
S2 due to its low CPU utilization. Traditional diagnostic tools
did not activate any alarm in this case, because the network
interface of S2 was still up and the CPU/memory utilization
was normal. In contrast, SOLID provided higher-level intelli-
gence with app-spec and behav-spec, and reported in this case

about the incomplete transaction of S2. As indicated in the
bottom part of Fig. 3, SOLID monitored three behaviors in
the servers. Normal nodes S1 and S3 experienced large success
rates and small response times, while S2 failed to respond to
behavior 2 and did not trigger the request of behavior 3.

Consulting Analysis
Traditionally, consulting companies use host-based methods,
such as embedding plugins, to collect data across different
content providers (CPs), which, however, can easily be pollut-
ed by the unstable proportions of users/applications using such
methods.

SOLID is able to draw a macro picture of the operating sit-
uation in an NSP’s network. Here we list one practical exam-
ple, where SOLID filters out the access traffic of three video
CPs in the NSP’s network and generates the statistics in detail.
The output semantics in this case is the competition analysis
based on the statistics of behavior sketches.

Figure 4a shows the overview of the traffic and user share
of the three CPs, where multiple page views from a single
IP address only contribute one count. CP3 attracts the most
users with the least traffic. The dominant user share infers
its advantages in attracting users, but the low traffic raises a
potential problem, as does how to make users stick to it. To
understand the problem better, Fig. 4b shows the statistics of
CP3 in detail]. The “VOD” channel attracts most of the users,
but does not produce very much traffic. In other words, users
do not pay much time or money on watching the whole video
but just glance at them. An implication is that there could be
a risk of losing users if CP3 cannot provide interesting/attrac-
tive content. In addition, Fig. 4c illustrates the users’ clicking
pattern in CP3’s VOD channel. Each circle is a web page, and
its diameter is proportional to the page views on this page. We
could infer many suggestions from this graph: Which video
attracts the most users? How many users actually pay for the
video when they jump into the detailed descriptions? In this
case, users fall away on WebPage2, which lowers the traffic
on WebPage4. Usually, CP can perform such analysis with the
web logs individually, but SOLID can do such mining at the

Figure 3. SOLID for diagnostic purposes.

S1 S2 S3

N1

Lowest CPU
utilization

Increase traffic

Users
SOLID system Mirrored data

IEEE Network • January/February 201622

network side for a much quicker response. More importantly,
an NSP can compare the data from multiple CPs in its net-
work, which is the advantage over the existing offline analysis
on the weblogs from a single CP.

Correlation Analysis
The interrelationships between different applications are com-
plex, since the developers may integrate diverse functional-
ities to enhance them. As a result, some of them overlap with
each other: the QQ Messenger (the most popular IM client in
China) promotes news to its users and Twitter as a social net-
work service (SNS) platform supporting one-to-one chatting.
On the other hand, some applications are complementary: a
news feed application can share information with your friends
on QQ or Twitter. With the correlation analysis performed by
the network provider, the output semantics can help better
understand the user preferences.

We demonstrate one-day frequencies of several popular
applications in an NSP’s network and evaluate their correlations
in Fig. 5, where the X and Y axes are the normalized frequen-
cies of using the corresponding applications. Figure 5a shows
the positive correlation between QQ and Tencent Microblog.
Since QQ has embedded some functions of Tencent Microblog,
Tencent Microblog can gain popularity from QQ. Figure 5b
shows the negative correlation between Weibo and Tencent
Microblog. From the figure, we have the following observations:
1.	The two products are competitors in the microblog field.
2.	They both have strong user loyalty (i.e., most users only use

one of them and stay with it).
We believe such reports are valuable to the related companies
and vendors for them to drive the right business decisions.

Performance Evaluation
Although SOLID outputs consistent and solid results, as
demonstrated above, we aim to test the potential processing
capacity and overhead. We evaluate SOLID’s kernel space
on an x86 platform with 12-core Xeon E5-2620 2 GHz and 32
GB memory. We preload two real traces with their original
segment orders. One was captured from the campus network
of a university in China obtaining 4.5 GB traffic. The other 7.5
GB trace was collected at a radio network controller (RNC)
in Hangzhou, China. We implement 38 application specifi-
cations, including seven catalogs of the applications, such as
SNS, media, and online shopping. We further give 1048 behav-
ior specifications for the evaluations.

The single thread implementation of SOLID achieves 3.0
Gb/s and 2.7 Gb/s with the two real traces, respectively (i.e.,
about 1.7 times faster than NetShield [12]). It is reported in
[12] that NetShield reaches an analysis speed of 11 Gb/s on a
DARPA trace, while the throughput of SOLID on the same
trace is 16.9 Gb/s. With multiple-thread evaluation using 10
cores, SOLID’s throughput is 17.2 Gb/s for the first real trace

and 15.9 Gb/s for the second. Considering that the through-
put of NetShield is measured without reassembly work and
only for HTTP with fewer (794) rules, we believe that SOLID
would achieve better performance than NetShield in a real
network with parallel acceleration.

The memory costs scale with the number of cores. When 10
cores are used, the memory cost varies between 708 MB and
839 MB during the test with different real traces. In the exper-
iments, the compression ratio between the volume of raw big
network data and the size of user sketch reaches 1216~1362.
As a result, the data volume for further user-defined high-level
analysis can be significantly reduced to bridge the aforemen-
tioned growing rate gap over the big network data.

Discussions
This article introduces the concept of deep semantics inspec-
tion, as well as its system framework to analyze big network
data. As an initial work of DSI, there are several limitations
and open questions that need to be explored in the future.

•The app-sketch and behav-sketch are extracted by app-
spec and behav-spec, which are now manually generated
according to the aforementioned principle. It is highly desired
to study the (semi-) automation of this process, especially
when the application changes frequently. A previous study [13]
investigated the automatic generation of the string/regex-based
specifications, which yield insights for this problem.

•Current design in this article is not capable to ana-
lyze encrypted traffic. Technically, using DSI over the raw
unencrypted traffic by decoding the SSL protocol is feasible
through shadow agent nodes. Here, we remark that abuse
of DSI allowing cross-referencing of an individual’s Inter-
net activities is socially controversial. The inspection of each
individual is usually forbidden due to privacy protection, but
the knowledge of the macro activities should be helpful, and
government and intranet censorship always exists legally. How
to make a balance between traffic analysis and privacy is an
interesting topic, and a recent work, BlindBox, inspecting the
encrypted traffic is viewed as a start [14].

•The behav-sketch is the interface between the kernel
and user space. A concise and efficient abstraction should be
carefully designed. A simple illustration of vast ontology and
imprecise concepts would be a nightmare. Starting from the
study of minimized but descriptive enough sketch categories,
like who, when, where, subjects, objectives, actions, and so on,
would be feasible.

Conclusion
In this article, we advocate the inspection of semantics over
big network data. DSI/SOLID is designed to capture, analyze,
and present the semantics of user intent by gathering unstruc-
tured data into a unified framework. Three real cases leverag-

Figure 4. The overview and detailed analysis of the three CPs with SOLID: a) the overview of users and the traffic volume of
the three CPs; b) detailed analysis of CP3 (most users did not finish watching the videos); c) the clicking timeline for the VOD
channel in CP3. Many users fall away on WebPage2.

CP1 CP2
(a) (b) (c)

CP3
0

2

4

6

8

10

12 Volume

of users
Tr

af
fic

vo
lu

m
e

(G
B)

0

5

10

15

20

25

30

35

#
of

users
(K

)

0%

10%

News TV Movies OthersVoD

20%

30%

40%
of users

Volume

WebPage1

08:38 08:45 08:52 09:00 09:07

WebPage2
WebPage3 WebPage4
WebPage5

IEEE Network • January/February 2016 23

ing DSI/SOLID, as well as performance experiments on high
throughput and efficient memory usage, have demonstrated
the usage and feasibility of DSI.

Acknowledgments
This article is supported by the NSFC (61272459, 61221063), Pro-
gram for New Century Excellent Talents in University (NCET-
13-0450), ERCIM “Alain Bensoussan” fellowship program,
Jiangsu Future Internet Innovation Project (BY2013095-1-12),
open project of Science and Technology on Information Trans-
mission and Dissemination in Communication Networks Labo-
ratory (ITD-U14001/KX142600008). It is also supported by the
NTNU QUAM (Quantitative modeling of dependability and per-
formance) research lab (https://www.ntnu.edu/telematics/quam).

References
[1] “Big Data 101: Unstructured Data Analytics”; http://www.intel.com/con-

tent/www/us/en/bigdata/unstructureddataanalyticspaper. html.
[2] C. Hu and Y. Jiang, “Online Semantic Analysis over Big Network Data,”

ERCIM News, no. 101, Apr. 2015.
[3] T. Benson et al., “MicroTE: Fine Grained Traffic Engineering for Data Cen-

ters,” CoNEXT, New York, NY, 2011, pp. 8:1–8:12.
[4] “Market Share for Mobile, Browsers, Operating Systems and Search

Engines,” 2013; http://www.netmarketshare.com/.
[5] “w3cSchools Browser Statistics and Trends,” 2013; http://www.

w3schools.com/browsers/browsers_stats.asp.
[6] “Cisco Visual Networking Index”; http://www.cisco.com/c/en/us/solu-

tions/collateral/service-provider/visual-networking-index-vni/white_paper_
c11-520862.pdf.

[7] H. Li et al., “Parsing Application Layer Protocol with Commodity Hardware
for SDN,” Proc. 11th ACM/IEEE Symp. Architectures for Networking and
Commun. Systems, Oakland, CA, 2015, pp. 51–61.

[8] R. Pang et al., “binpac: A yacc for Writing Application Protocol Parsers,” Proc.
6th ACM SIGCOMM Conf. Internet Measurement, 2006, pp. 289–300.

[9] C. Meiners et al., “Flowsifter: A Counting Automata Approach to Layer 7
Field Extraction for Deep Flow Inspection,” 2012 Proc. IEEE INFOCOM,
2012, pp. 1746–54.

[10] H. Li and C. Hu, “ROOM: Rule Organized Optimal Matching for Fine-Grained
Traffic Identification,” 2013 Proc. IEEE INFOCOM, 2013, pp. 65–69.

[11] H. Li and C. Hu, “MP-ROOM: Optimal Matching on Multiple PDUs for
Fine-Grained Traffic Identification,” IEEE JSAC, vol. 32, no. 10, Oct.
2014, pp. 1881–93.

[12] Z. Li et al., “NetShield: Massive Semantics-Based Vulnerability Signature
Matching for High-Speed Networks,” Proc. ACM SIGCOMM 2010 Conf.,
New York, NY, 2010, pp. 279–90.

[13] Y. Wang et al., “A Semantics Aware Approach to Automated Reverse
Engineering Unknown Protocols,” 20th IEEE Int’l. Conf. Network Protocols,
2012.

[14] J. Sherry et al., “BlindBox: Deep Packet Inspection over Encrypted Traf-
fic,” Proc. ACM SIGCOMM, 2015.

[15] C. Hu et al., tech. report, “Deep Semantic Inspection for On-Line Analysis
of Big Network Data,” Xi’an Jiaotong Univ., 2015; http://nskeylab.xjtu.
edu.cn/people/huc/Pub/DSI_report.pdf.

Biographies
Chengchen Hu [M’09] received his Ph.D. degree from Tsinghua University,
China, in 2008. He is currently an associate professor with the Department
of Computer Science and Technology, Xi’an Jiaotong University, China. His
research interests include network measurement, data center networking,
and software defined networking. He is the recipient of a fellowship from the
European Research Consortium for Informatics and Mathematics (ERCIM), New
Century Excellent Talents in University awarded by the Ministry of Education,
China.

Hao Li [S’13] received his B.S. degree in computer science from Xi’an Jiaotong
University in 2010, and is now a Ph.D. candidate in the Department of Com-
puter Science and Technology at the same university. His research interests are
network measurement and software defined networking.

Yuming Jiang [SM’14] received his Bachelor’s degree from Peking University,
China, and his Ph.D. degree from National University of Singapore. Since
2005, he has been a professor with the Norwegian University of Science
and Technology (NTNU) . His main research interest is in the provision and
analysis of quality of service guarantees in communication networks. He was
General Chair of the IFIP Networking 2014 Conference and is the author of
Stochastic Network Calculus.

Yu Cheng [SM’09] received his Ph.D. degree in electrical and computer
engineering from the University of Waterloo, Canada, in 2003. He is now an
associate professor in the Electrical and Communications Engineering Depart-
ment, Illinois Institute of Technology. His research interests include wireless
networks, network security, and next-generation Internet technology. He has
received several Best Paper Awards including a Runner-Up Best Paper Award
at ACM MobiHoc 2014. He received the NSF CAREER Award in 2011 and
IIT Sigma Xi Research Award in the Junior Faculty Division in 2013.

Poul Heegaard [SM’14] received his Ph.D. in telematics from NTNU in 1998.
He has been a full professor at the same university since 2010. His main
research interests are performance and dependability modelling and simula-
tions of communication networks, currently focusing on resource optimization
and management in distributed autonomous systems in a multi-domain context.
He was head of the Department of Telematics (2009–2013), and is now head
of the QUAM research lab at NTNU.

Figure 5. The application correlation analysis: a) The positive correlation between QQ and Tencent Microblog: b) the negative
correlation between Weibo and Tencent Microblog.

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

(a) (b)

1.00

Te
nc

en
t

M
ic

ro
bl

og

QQ

0.00
0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

Te
nc

en
t

M
ic

ro
bl

og

Weibo

