Dynamic Proofs of Retrievability for Coded
Cloud Storage Systems

Zhengwei Ren, Lina Wang, Qian Wang, Member, IEEE, Rongwei Yu, and Ruyi Deng

Abstract —Cloud storage allows users to store their data in a remote server to get rid of expensive local storage and management
costs and then access data of interest anytime anywhere. A number of solutions have been proposed to tackle the verification of remote
data integrity and retrievability in cloud storage systems. Most of existing schemes, however, do not support efficient data dynamics
and/or suffer from security vulnerabilities when involving dynamic data operations. In this paper, we propose an enhanced dynamic
proof of retrievability scheme supporting public auditability and communication-efficient recovery from data corruptions. To this end,
we split up the data into small data blocks and encode each data block individually using network coding before outsourcing so that
i) an update inside any data block only affects a few codeword symbols and ii) communication-efficient data repair for a breakdown
server can be achieved. To eliminate the communication overhead for small data corruptions within a server, each encoded data block
is further encoded via erasure codes. Based on the encoded data blocks, we utilize range-based 2-3 tree (rb23Tree) to enforce the
data sequence for dynamic operations, preventing the cloud service provider from manipulating data block to pass the integrity check
in the dynamic scenario. We also analyze the effectiveness of the proposed construction in defending against pollution attacks during
data recovery. Formal security analysis and extensive experimental evaluations are conducted, showing that the proposed scheme is

practical for use in cloud storage systems.

Index Terms —Cloud storage, Data integrity, Data availability, Public audit, Data dynamics.

1 INTRODUCTION

Cloud computing has attracted more and more atten-
tions in both academia and industry due to its appealing
advantages such as on-demand self-service, location in-
dependent resource pooling and rapid resource elasticity,
etc. [1]. As an indispensable part of cloud computing,
cloud storage makes data storage a service in which
data is outsourced to a cloud server maintained by a
cloud provider. From the users’ perspective, storing data
remotely into the cloud, especially for IT enterprises,
brings attracting benefits, e.g., avoidance of capital ex-
penditure on hardware and software, relief of the burden
for storage management, etc. [2].

Although cloud storage has numerous advantages,
some challenging security issues have to be addressed
for cloud storage to be widely accepted by users. A cloud
server storing many users’ data will be the preferred
attack target and the data may be faced a broad range
of threats [3]-[5]. Moreover, differently from traditional
data storage, in cloud storage the data owner does not
possess data physically after data is outsourced into the
cloud service providers (CSPs) who are not fully trusted.
For their own benefits, CSPs might discard portion of
rarely accessed data to save storage space. Also, the CSPs
may be tempted to hide the data corruptions caused by

e Z. Ren, L. Wang, Q. Wang, R. Yu and R. Deng are with the Key Labora-
tory of Aerospace Information Security and Trusted Computing, Ministry
of Education, and School of Computer, Wuhan University, Wuhan, China,
430072. E-mail: {zhengwei_ren Inawang}@163.com, willwq@msn.com,
yrwl23@126.com, rzw@whu.edu.cn.

server hacks or Byzantine failures to maintain reputation
[6], [7]. It has been recognized that the security issues
such as data integrity and availability are the main
obstacles for cloud storage to be successfully adopted.
To prevent cheating from the “semi-trusted” CSPs,
a trivial solution is to remotely download the entire
data and periodically check their integrity. The resulting
large communication costs, however, renders the loss of
benefits of cloud storage service. Recently, two effective
solutions have been proposed under different models
such as the “Provable Data Possession (PDP)” model
[6] and the “Proof of Retrievability (PoR)” model [8].
Following these models, improved schemes [7], [9]-[17]
have been proposed to support new features such as
data dynamics, public auditability etc. The support of
data dynamics should allow the data owners to modify,
delete the existing data blocks and insert new blocks.
The support of public auditability allows the data owner
to delegate the checking tasks to a third party auditor
(TPA) so as to save his own computational resources.
Unfortunately, the existing solutions still have severe
limitations, which makes them impractical for cloud
storage systems. In particular, it has been shown that
prior PoR solutions suffer from security vulnerabilities
when involving dynamic data operations [12]. Thus, it
is necessary to defend against this realistic attack. In
addition, the existing PoR schemes usually assume data
coding is done before outsourcing. However, a single
bit update will affect a large fraction of data storage,
which makes data updates extremely inefficient. Finally,
although prior solutions argue original data can be
retrieved using coding techniques even after corruption,

how to perform efficient data recovery on corrupted data
blocks has not been explicitly discussed.

In this paper, we propose a new dynamic proof of
retrievability scheme for coded cloud storage systems.
To ensure a server stores the data blocks that it is sup-
posed to store, we utilize the rb23Tree [15] to organize
the encoded blocks in the leaf nodes to enforce data
access sequence and support cheat-proof data dynamic
operations. To support public auditability, we use the
aggregated signature-based broadcast (ASBB) encryption
scheme [18] to generate metadata tags of the encoded
blocks. In order to support efficient dynamic data oper-
ations, we achieve high coding granularity by encoding
at the data block level instead of the whole large data
file, i.e., we split up the data into small data blocks and
encode each data block individually. In using this coding
strategy, an update inside any data block only affects
the current data block itself and its associated codeword
symbols without having to update the whole large data
file. To improve data reliability and availability, we
exploit both within-server redundancy and cross-server
redundancy to encode data blocks before outsourcing.
Specifically, we use regenerating codes [19] to encode
the original data file as the outer code, providing data
decoding and data recovery. The use of regenerating
codes can maintain the same data redundancy level
and same storage requirement as in traditional erasure
codes (e.g., RAID-6 [20]), but incurs less data recovery
communication cost across multiple storage servers. In
addition, each encoded block is further encoded via
erasure codes as the inner code to save communication
cost when a small amount of data corruption is detected
inside a storage server. The contributions of this paper
are summarized as follows:

— We propose a new dynamic proof of retrievability
scheme for coded cloud storage systems. We use
rb23Tree to authenticate the sampling data blocks to
prevent the storage server from manipulating data
to pass the integrity check after dynamic data oper-
ations. In addition, we adopt both the within-server
redundancy and the cross-server redundancy archi-
tecture to improve data availability while achieving
high communication efficiency in data recovery pro-
cess.

— We give a detailed description of the data encod-
ing, decoding and recovery procedures, which were
lacking in most existing PoR based solutions. By
utilizing the network coding as the outer code and
the erasure codes as the inner code, communication-
efficient and effective data recovery can be realized.

— We give a formal security analysis and an extensive
experimental study to demonstrate the security and
efficiency. We show the correctness, the soundness
and the data retrievability of our proposed construc-
tion. We analyze and evaluate the system perfor-
mance in terms of data recovery cost and the data
auditability cost.

2 RELATED WORK

Remote data integrity checks for public cloud storage
have been investigated in various systems and security
models [6]-[17], [21]-[27]. Considering the large size
of the outsourced data and the owner’s constrained
resource capability, the cost to audit data integrity in the
cloud environment could be formidable and expensive
to the data owner. Therefore, it is preferable to allow an
independent expertise-equipped TPA to check the data
integrity on behalf of the data owners [11].

Ateniese et al. [6] was the first to introduce the “Prov-
able Data Possession (PDP)” model and proposed an
integrity verification scheme for static data using RSA-
based homomorphic authenticators. At the same time,
Juels et al. [8] proposed the “Proof of Retrievability
(PoR)” model which is stronger than the PDP model
in the sense that the system additionally guarantees the
retrievability of outsourced data. Specifically, the authors
proposed a spot-checking approach to guarantee posses-
sion of data files and employed error-correcting coding
technologies to ensure the retrievability. A limitation of
their scheme is that the number of challenges is con-
strained. Shacham et al. [10] utilized the homomorphic
signatures in [28] to design an improved PoR scheme. Al-
though the scheme supported public auditability of static
data using publicly verifiable homomorphic authentica-
tors, how to perform data recovery was not explicitly
discussed. To achieve strong data retrievability, Bowers
et al. [21] proposed a data coding structure achieving the
within-server redundancy and cross-server redundancy.
Chen et al. [22] and Chen et al. [26] constructed their
remote data checking schemes based on network coding
which can save the communication cost of data recovery
compared with erasure codes. In particular, [26] consid-
ered the cross-server redundancy as [21] in a multiple-
server setting, where the cross-server coding was done
using network coding instead of erasure codes in [21]].
Recently, Cao et al. [25] designed a secure cloud storage
system using LT codes.

To support data dynamics, many remote data au-
ditability schemes have been proposed on the basis of
PDP and PoR models. Erway et al. [9] developed a
PDP scheme with full data dynamics using skip list.
Meantime, Wang et al. [7] proposed a scheme supporting
public auditability and data dynamics using BLS based
signatures and Merkle hash tree (MHT). Zhu et al. [12]
presented a cooperative PDP model in a multi-CSPs
setting and illustrated security vulnerabilities of data
dynamics in existing data auditability schemes. Zheng
et al. [15] presented a fair and data dynamics enabled
PoR scheme based on ranged-based 2-3 tree. Unfor-
tunately, the authors did not consider how to update
the redundant encoded data and their scheme does not
support public auditability. Stefanov et al. [24] consid-
ered dynamic PoR in a more complex setting where an
additional trusted portal performs some operations on
behalf of the client and caches updates for an extended

period of time. More recently, Cash et al. [27] proposed a
solution providing PoR for dynamic storage in a single-
server setting via oblivious RAM.

3 SYSTEM MODEL AND SECURITY REQUIRE-
MENT

3.1 Public Cloud Storage Auditing Architecture

A number of proposals [6], [7], [9]-[13] employ a tripar-
tite architecture as illustrated in Fig.1. In this framework,
there are three different entities including data owners,
CSP and TPA. The data owner has a large number of
files to be stored in the CSP who has significant storage
space and computation resources to provide data storage
service. In this model, TPA is a trusted third party
auditor who checks the data integrity on behalf of the
data owners periodically or upon requests.

<) <
0 -

inner code inner ¢ode inner cogé

Data audit delegation

Third Party
Auditor (TPA)

Data audit report
Data Owner

Fig. 1. Cloud Storage Public Auditing Architecture.

3.2 Public Auditing Model for Coded Cloud Storage

Our encoded cloud storage system consists of the
following algorithms:
KeyGen(1%) — (pk, sk) is run by the data owner. It takes
as input a security parameter x and returns the public
key pk and the secret key sk.

TagGen(sk,F) — (¢¢,T;) is run by the data owner.
Given a data file F, the data owner first divides it into
data blocks m;(1 < i < n). Then, the data owner encodes
each block m; into an encoded block. The encoded blocks
are organized by rb23Trees T (1 < ¢t < s). The data owner
computes the metadata tags ¢, for the encoded blocks
generated from the same original block. Finally, coded
data and metadata tags are outsourced to the cloud.

ChalGen(c) — chal is run by the TPA. The input is the
total number of blocks and the output is a challenge chal
which contains sampling data blocks to be checked. The
chal is sent to the CSP as a request to check the integrity
of the sample blocks.

ProofGen(chal, Ty, ¢, F') — P is run by the server. It
takes as input the challenge chal, the rb23Tree T}, the
metadata tags ¢, and the encoded data file F'. It outputs
a proof P to allow the TPA to verify the data integrity.

VerifyProof(P) — (True, False) is executed by the
TPA. After receiving the proof P, TPA verifies the in-
tegrity of the sample blocks. It outputs True if the
checking results pass the integrity verifications for each
server. Otherwise, it returns False.

UpdateRequest() — R is run by the data owner. It out-
puts an update request R which contains: the operator
op = M,I,D, the index i. When the op is M or I, the
request R indicates the new encoded blocks and the
corresponding metadata tags.

Update(R, F', ¢4, Ty) — wv(root); is executed by the
server. It takes as input the encoded file F’, the metadata
tags ¢: , the rb23Tree T} and the update request R and
outputs the new root value v(root); of the new rb23Tree
T].

Recovery(i) — F” is run by the data owner. It takes
as input the indices of the corrupted data. When the
amount of corrupted data are less than a threshold, the
data owner can recovery the corrupted data and generate
a new encoded file F of the original data file F.

3.3 Adversarial Model and Security Requirements

Since data owners are out of physical control of their
data, it is essential to convince the data owners that
their data are securely kept without being modified by
unauthorized parties. Usually, two basic security require-
ments are considered.

First, the data integrity should be verifiable and the
data owners need to be convinced that their data has
not been altered without their authorization. Since the
data is physically controlled by CSPs who may be
tempted to occasionally delete rarely accessed data to
save the storage space or try to forge arguments of
honest behaviors to cheat data owners for their own
benefits. Many researches have focused on the remote
data integrity check topic [6], [7], [10]-[16]. However, the
support of secure and efficient data dynamic operations
still remains a challenging problem. On the one hand,
provable data possession on remote cloud servers should
be guaranteed even if the data owner has dynamically
updated their data. On the other hand, efficient data
updates on encoded data should be achieved to ensure
that an update on a single or a few data blocks will not
affect the whole bunch of data.

Second, the data should be retrievable when data cor-
ruptions are within a threshold. To achieve data recovery,
data replica and data encoding are the common meth-
ods. Although data replica is easy to be implemented
and deployed, it consumes too much storage resource.
There are many data encoding schemes which have
different advantages and disadvantages in various appli-
cation scenarios. As for cloud storage systems, network
bandwidth bottleneck is one of the important parame-
ters of system performance. Moreover, the encoding of
outsourced data should support efficient data dynamics
to avoid the decoding and re-encoding of the entire data.
However, the existing PoR schemes usually encode the

entire file data before outsourcing and do not provide
implementation details when data corruption occurs.
Consider the great need of supporting data dynamics
in practice, the cloud storage system should provide
efficient data operations and recovery over encoded data
in terms of both communication and computation costs.

We define (P(F, o), V)(pk) to be a public proof, where
P takes as input a file F' and a set of tags o, and a public
key pk, where P(z) denotes the prover P holds the secret
z and (P, V)(z) denotes the prover P and the verifier V'
share z in the protocol execution. In the following, we
give the definition of the security model of a PoR based
cloud storage system.

Definition 1. Security model: A pair of interactive
machines (P,V) [23] is called an available proof of
retrievability for a file ' if P is a (unbounded) prob-
abilistic algorithm, V' is a deterministic polynomial-time
algorithm, and the following conditions hold for some
polynomial pq(-), p2(-), and all K € N:

eCorrectness: For every o € TagGen(sk, F),

Pri(P(F,0),V)(pk) = 1] = 1 = 1/p1(x) ey

eSoundness: For every o* ¢ TagGen(sk,F), every

interactive machine P*,
Pri(P*(F,o"),V)(pk) = 1] < 1/p2(k) 2)

where p1(-) and p2(-) are two polynomials, and « is the
security parameter.

In this definition, the function 1/p; (k) is called correct-
ness error, and the function 1/py(x) is called soundness
error. For non-triviality, we require 1/p1(k) + 1/p2(r) <
1 —1/poly(rk). Different from correctness, soundness im-
plies that it is infeasible to fool the verifier into accepting
false statements. Soundness can also be regarded as a
more strict notion of unforgeability for the file tags.
Thus, the above definition means that the prover cannot
forge the file tags or tamper with the data if soundness
property holds.

3.4 Preliminaries on Redundancy Approaches for
Data Recovery

Data redundancy techniques such as replication, coding
(e.g., erasure codes and network coding) are usually
employed in the distributed storage systems to improve
the data reliability and availability [25].

1) Replication is the simplest way to generate redun-
dancy. In the replication approach, the original data is
completely copied to each of n storage servers. Data
users can retrieve the original data by accessing any one
of the storage servers. When one server is corrupted, the
original data can be recovered by simply copying the
entire data from any one of the healthy servers. Fig.2(a)
gives an example of the replication technique. Obviously,
the storage overhead of this redundancy method is very
expensive.

2) Fig.2(b) gives an example of using erasure codes
for obtaining data redundancy. Data users can recover
the whole m original data blocks by retrieving the

Recovery
from corruptlon

Retrleval
from cloud

T
&4

Data user

Outsouring

after codin
/s-
= g
o8 5|

Cloud server
Data owner

complete copy
(a) Replication.

Recovery
from corruption
Outsouring

after coding
1
/ Retrieval
om cloud
-mi
[S4/ [Ciad] —> = mig]

Data owner Cloud server

Data user

(b) Erasure codes.

Recovery
from corruption

Outsouring

g

&P

Data owner

—

complete copy partial copy encode decode

Data user

(c) Network coding.

Fig. 2. Data redundancy techniques.

same number of encoded data blocks from any k of n
servers. As a redundancy-reliability tradeoff each server
only needs to store m/k encoded data blocks. However,
compared with the replication-based solution, erasure
codes may have a higher network overhead for the data
recovery. For example, Reed-Solomon codes [29], which
is a typical erasure code, usually need to reconstruct
all the original data blocks in order to generate an
encoded block. In other words, in order to generate
only m/k encoded data blocks for a failed server, we
have to retrieve m encoded data blocks. In Fig.2(b), the
parameters (m, k, n) are set to be (2,2,4), respectively. The
original data block m; is first divided into 2 native data
blocks equally. These two native blocks are then encoded
into 4 encoded blocks C; ;; which are stored in 4 cloud
servers. Each cloud server stores one encoded blocks.
The size of C; ;,; is equal to the size of the native data
block.

3) Using network coding [19], [30], we first divide a
given file object into equal-size native data blocks. The
native data blocks then are encoded by linear combina-
tion to form encoded data blocks which are distributed
over n > k storage servers. The original data file object
can be reconstructed from the encoded blocks contained
in any k of the n servers. Thus, it tolerates the failure

of any n — k storage servers. The network coding can
achieve a tradeoff between storage and communication
cost. Fig.2(c) gives an example of network coding for
achieving data redundancy. The parameters (n,k) are
set to be (4,2). In this example, the original data block
m; is first divided into 4 native data blocks with equal
size. These native data blocks are then encoded into 8
encoded blocks P; ;; and store them in 4 cloud servers,
where each cloud server stores two encoded blocks.
Here, the size of P; ;; is equal to the size of the native
data block.

Based on the above illustrations, the storage cost of
replication is more expensive and the recovery commu-
nication cost of erasure codes is higher than replication.
Compared to replication and erasure coding, network
coding [19] can provide a significant advantage over
erasure codes: a new encoded fragment can be con-
structed with optimal minimum communication cost by
contacting some of the healthy servers (the communica-
tion cost of data recovery can be made as low as the
repaired fragment) [22]. Actually, the use of network
coding can make a tradeoff between the storage cost and
the communication cost. Motivated by this observation,
we employ the network coding as the outer code to
tolerate the entire cloud server corruption. In particular,
instead of encoding the entire data file, we split up the
data into data blocks and redundantly encode each data
block individually via network coding to support data
dynamics and make a performance tradeoff. To tolerate
data corruption inside a server and achieve a low level
of communication overhead, we adopt the erasure codes
as the inner code.

In the following discussions, we define the repair traffic
factor as the ratio between the amount of data that
needs to be retrieved from other surviving servers to the
amount of data that is generated to be stored on a new
server. The repair traffic factor can be a metric to measure
the communication cost of the repair component. In
Fig.2, assume the size of data block m; is 1MB, and
the subblock of m; is equal-size. Then, the total storage
cost and repair traffic factor of replication, erasure codes
and network coding are (4MB,1),(2MB,2),(2MB,1.5), re-
spectively. We can see the network coding can save
50% storage cost compared with replication and 25%
communication cost compared with erasure codes.

4 OUR CONSTRUCTION

In this section, we will give a detailed description of our
proposed construction. To obtain efficient data recovery,
the key idea is to split up the data into data blocks and
redundantly encode each data block individually so that
an update inside any data block only affects the encoded
blocks of the same original data block. The encoded
blocks are then organized by rb23Tree to support secure
and efficient data dynamic operations The aggregatable
signature-based broadcast (ASBB) encryption scheme
[18] is adopted to generate metadata tags for the encoded

blocks, providing guarantee of data integrity. The inter
coding and outer coding of outsourced data enables
efficient recovery when data corruption occurs.

4.1 Overview

Our scheme consists of five stages: (1) Encoding stage.
The data owner splits up the data into data blocks and
encode them using network coding. Blocks stored in the
same server are further encoded using erasure codes.
(2) Setup stage. In this stage, the data owner executes
the KeyGen and TagGen algorithms to generate system
parameters and metadata tags for the encoded blocks.
Then the data owner outsources the encoded blocks and
metadata tags to the CSP. (3) Verification stage. The TPA
interacts with CSP periodically to check the integrity
of data on behalf of the data owner. To do so, the
TPA runs ChalGen to launch a challenge, and the server
executes ProofGen to compute the response which will
be verified by VerifyProof executed by TPA. (4) Update
stage. The data owner executes UpdateRequest to send
an update request to the server, who runs Update to
execute the update operation. In each update round,
the data owner can verify whether the update request
is correctly executed or not. (5) Recovery stage. When
data corruption occurs, data owner executes the Recovery
algorithm to recover from corrupted data files.

4.2 Encoding

We follow the same coding structure as HAIL [21]
by exploiting both the within-server redundancy and
cross-server redundancy to improve data reliability and
availability. The key difference between the existing
approaches and ours is that we adopt network coding
instead of erasure codes for obtaining the cross-server
redundancy.

Specifically, we utilize the functional minimum storage
regenerating (FMSR) code [19] as the cross-server code.
FMSR belongs to Maximum Distance Separable (MDS)
codes. An MDS code is defined by the parameters (s, k),
where k < s. An (s, k)-MDS code means that the original
data can be reconstructed from any k out of s servers.
FMSR encodes a data file F of size |F| into s(s — k) data
blocks of size |F|/(k(s — k)) each.

1) Outer code. Let F' = (mq,ma,---,m,) be the
data file, and EM = [ay;] be an encoding matrix
for some coefficients in the Galois field GF(2%) where
l=1,---,s8(s—k),j=1,--- k(s — k). Each row vector
of EM is an encoding coefficient vector (ECV) that
contains k(s—k) elements. We use EC'V; to denote the ith
row vector of EM. For each block m;(1 < i < n), we first
divide it into k(s — k) equal-size native blocks. Then, we
encode these k(s — k) native blocks into s(s — k) encoded
blocks, denoted by P;; which is computed by the scalar
product of ECV; and the native blocks vector m;, i.e.
P = Z?ka) oy m; i, where 1 <i<n,1<Il<s(s—k).

All arithmetic operations are performed over GF(2%).
Each P, is formed by a linear combination of the k(s—k)

native blocks. The encoded blocks P; ; are then stored in
the s storage servers, each having s — k blocks. We use
P,i(1<i<n1<t<s,1<j<s—k)to denote the
encoded block on a server, i.e. the j-th encoded block of
m; on the t server. There are many ways of constructing
EM, as long as it satisfies the MDS property and the
repair MDS property [19].

2) Inner code. In order to save communication cost, we
use an (s, k') erasure codes as the within-server code to
encode each P;; ; into a new encoded block P/, ; (1 <
g <¢'). An (s¢', k') erasure code encodes k' fragments of
data block into s’ fragments such that up to | (n' —k’)/2]
errors, or up to n’ — k' erasures can be corrected. When
a small fragment is corrupted, the server can recover
the original data from the corruption locally instead of
retrieving data blocks from other healthy servers.

As shown in Fig.3, we use an (4,2)-FMSR code to
achieve the cross-server redundancy and an (5,3) erasure
code to achieve the within-server redundancy.

Pig Pz Pia Pz P Pz P P
Pl || Pzt | | Pliza| [Plizzr| | Pt || Pliaar| | Pliant || Pz
Piaa|[Piza | [Phiziz||Phizaz| [Plissa|| Plisaz| | Pliasz|| Pliazz
P || Plisza| [Plizia| | Pizzs| | Plisas|| Plisas| | Pligra|| Plidzs
Piria|[Pisza| [Pizise| | Pizas| [Plissa|| Piszse| | Pliasal| Pliazs
Pisis|[Plisas| |Plizis| | Plizas| |Plians|| Pliszs| | Pliass|| Pliazs
Server 1 Server 2 Server 3 Server 4

Fig. 3. Within-server redundancy and cross-server redun-
dancy.

4.3

Let G and Gr be multiplicative cyclic groups of the
same prime order p. A bilinear map is a map e
G x G — G with the following properties [31]: 1)Com-
putable: there exists an efficiently computable algorithm
for computing e; 2)Bilinear: for all u,v € Z,, it holds
that e(g",¢") = e(g,9)""; 3)Non-degenerate: e(g,g) # 1
for any generator g of G; 4)for any wui,us,v € G,
e(ujug, v) = e(uy,v) - e(ug,v). Let h(:) : {0,1}* — G be a
secure hash function mapping a string to G uniformly.
The system parameters and metadata tags are generated
as follows.

1) KeyGen: The data owner randomly selects an ele-
ment 7 € Zy, X € G\{1} . Then the data owner computes
R=yg"",A=e(X,g). The system public parameters are
(g,h,p,G,Gr,e), the public key is pk = (R, A) and the
secret key is sk = (r, X).

2) TagGen: Given a file F, the data owner generates
an identity fid for F' and divides F' into n blocks, i.e.
F = (my,---,m,) where m; € Z. For each block m;,
the data owner encodes it into s's(s — k) encoded blocks
Pl <i<nl<IlI<s(s—k),l1<gqg<¢s)viaa
(s,k)-FMSR code and a (s', k’)-erasure code. In order to
tolerate cloud server data corruption, the data owner

Initialization

stores ns’s(s — k) encoded blocks in s cloud severs.
Each cloud server stores ns’'(s — k) encoded blocks. In
each cloud server, these ns'(s — k) encoded blocks are
organized by an rb23Tree T;(1 < ¢ < s). In each T3, each
node stores s'(s— k) encoded blocks of the same original
data block.

The data owner then computes the hash value of the
s'(s—k) encoded blocks of data block m; +(1 <i<n,1<
t < s) for each cloud server, i.e. H; ; = h(fid||Pe.y), where
Pow = Ployill- 1P ol 1Bl gl 1Pl g
Finally, the data owner computes the tag o;; for the
encoded blocks in each server m;; : 0y = (XFen H; ;).

=N, Ixt>

the data owner sends the encoded blocks P/, ; , with the
information aus, = {fid, ¢, T,} to the corresponding
server, sends the fid and tag value v(root); of root
node of each rb23Tree to TPA and keeps the information
auer = {fid,v(root);} with the encoding matrix EM
locally.

3) rb23Tree: The range-based 2-3 tree or rb23Tree for
short can not only offer the dynamic property of 2-3 trees
with logarithmic complexity but also allows the verifier
to verify the value and index of the leaf node.

In the rb23Tree, each node stores three types of infor-
mation:

o/(k): the height of node k. The height of leaf node is
defined 1.

or(k): the range value of node k, namely the number
of leaves corresponding to the subtree rooted at k. If &
is a leaf, r(k) is 1 and if k is NULL, r(k) is 0. The r(k)
of the root node is the number of leaves in the rb23Tree.

ov(k)the tag wvalue of node k. v(k) is defined as
H(I(k)||r(k)||v(chy)]|v(che)||v(chs)) or e or O when
l(k) > 1 or k is a leaf or k is NULL, respectively. Here, ||
is the concatenation operation, chi, chs, chs are the tree
left-to-right children of k£ (when k only has two children,
chsz is NULL), e;, is the element value stored in leaf node
k, and H() is a collision-resistant hash function.

Following [15], we also define m; to be a proof path
for locating the ith leaf by traversing the path starting
at the root node. We also define the min(k) and max(k),
which denote the minimum and maximum leaf indices
that can be reached via node k, respectively.

When locating an appointed leaf node whose index is
i, we need to calculate the values of min() and max()
from the root node to subjacent node step by step. Note
that a node k is on the path from the ith leaf node to the
root node if and only if i € {min(k), maz(k)}.

Assuming the proof path m; = {k1,--- ,k.}, where k;
is the ith leaf node, k, is the root node, and each node
k; € m; is associated with an 8-element tuple mark(k;) =
{U(kj),r(k;),r(c1),v(c1), r(c2),v(c2),r(cs), v(cs)}. When
j =1, k; is the leaf node and r(k;) in mark(k;) is v(k;),
i.e., the tag value of the leaf node. c¢i, 2, c3 are k;’s three
left-to-right children and r(¢;) = v(¢;) = —1(1 <t < 3)
if ¢; € m;, (i) = v(c;) = 0 if ¢; does not exist.

In Fig.4, we give an example of rb23Tree. We use k; ;
to denote a node where i is the height and the j is the

index. Each inner node & stores (I(k), r(k),v(k)). Suppose
we want to verify the information of the 7th leaf node.
The proof path is m; = {k1,7, k23, k3,2, ka1}. The tuples
along the proof path are shown in Table 1.

kg ki kyz kg ks kig ki kg kg ko

Fig. 4. An Example of rb23Tree.

TABLE 1
Information on proof path of the 7th leaf node

I(k) r(k) r(cr) wler) r(c2) wv(ez) r(es) wvles)
kaa 4 11 4 w(ksy) -1 -1 0 0
kso 3 7 -1 1 2 w(kaa) 2 w(kas)
kos 2 3 1 wlkis) 1 w(kie) -1 -1
kiz 1 w(kiz) O 0 0 0 0 0

4.4 Data Integrity Verification

After the encoded data file with the metadata tags
and the rb23Tree are outsourced to the server, TPA can
periodically launch integrity checks on behalf of the data
owner. On receiving the challenge, the server generates
a proof and sends it to TPA.

1) ChalGen: In each auditing round, TPA first randomly
selects a number ¢; € Z; and computes ¢; = g'. Then,
TPA randomly picks ¢ elements I = {s1,---,s.} from
the set 1,---,n where n is the number of data blocks.
Without loss of generality, we assume s; < - < s, that
can be generated using pseudo-random permutation. For
each s; in I, TPA chooses a random value v; € Ly, Then,
the TPA sends the challenge chal = {(i,v;)icr,c1} to
each server. According to the chal, each server returns
{H; (ic1,1<t<s)} to TPA. In response, TPA chooses a
random element m € Gp and computes ¢ = R w; =
m - e(]];c IH;J}, ¢2). Finally, the value w; is sent back to
each server.

2) ProofGen: All servers run this algorithm to generate
proofs to prove the integrity of the checked encoded
blocks. Specifically, each server executes the following
computing independently:

— Vi — .
Ot = Hielo-i,tv Ht = Zielvzpenu (3)
my = wy - e(og,c1)
Each server then sends the m; and p, as the proofs to

TPA. All the proof paths m;(;c) are also returned to TPA.
So for each server the proof P is P = {mj, s, Ti(icr) }-

3) VerifyProof: TPA runs this algorithm to validate
the proof P from each server. For ¢ = 1,---,s TPA
first calculates B, = e(X,cy 1)*“ according to the gy
returned by CSP. Then, TPA checks whether equation
(4) holds and executes Algorithm 1 to verify whether
position]k] = i and value[k] = v(root);.

mBy = my 4)

Algorithm 1 Fzamine(v(root):, m; +)

This algorithm allows an entity, who knows v(root):,
to verify the ith element e; of (ordered set) S =
{e1,--- ,en} is stored exactly at the ith leaf by examining
proof path (ordered set) 7;; = v1,- - - , v, provided by the
server.

1)initialize an array position[l---k] = 0 and array
value[l --- k] = 0. //position tracks the index of the leaf
that will be checked with v(-) = e;, value tracks v(v;)
where v; € m; (icq)-

2)position[l] + 1, value[l] + e;.

3)for j = 2,---,k, do //v; has three children
Chl,chg,chg
if chy € 7 e, ie., r(ch) = =1,v(chy) = —1,
then

position[j] < position[j — 1],
valuelj] — H(U(k)lIr(k) lvatuelj — 1)[[o(cha) [o(chs))
end if
if cho € ;e i€, r(chy) =
then

—1,v(ch2) = —1,
position[j] < position[j — 1] + r(chq),
vatuelj] — H(U()Ir(ky) lo(chy)lfvaluelj — 1]][v(chs))
end if
if chs € ;e ie., r(chs) =
then

—1,v(chs) = —1,
position[j] < position[j — 1] + r(chy) + r(cha),
valuelj] — H(I(k)|[r(k;)|[v(chr)[o(chs)l[valuelj - 1]).
end if
end for
4)if position[k] = i and value[k] = v(root);, then
return TRUE
else
return FALSE
end if
If they all hold, VerifyProof outputs 1, otherwise out-
puts 0, meaning there is a data corruption. The TPA will
return the results and the corruption location to the data
owner.
4.5 Secure Data Updates

In this subsection, we discuss the dynamic update oper-
ations including block modification, block insertion and
block deletion.

1)UpdateRequest: The data owner sends the update
request {op, I = {t —1,i,i+ 1}} to each server where
op € {M,I,D} is the update operation, i is the up-
date index. After receiving the update request, each
server returns the corresponding proof path w;.(j €
I5) to the data owner. The data owner then calls the
Ezamine(v(root),, ;) (j € I2) to verify the validity of

the path. If all verifications have been passed, the data
owner executes the following operations according to the
op (Without loss of generality, we assume 2 < i < n.).
op = M: The data owner downloads s'k(s — k) en-
coded blocks of m; from any k of the s servers and
decodes them to recover the original data block m; (see
the Decoding Procedure). Then data owner encodes the
new block m} using the original encoding matrix EM
stored locally, generate new encoded blocks P, ; ~and
compute the new tags o;,. The new encoded blocks, the
new tags are sent to the each corresponding server.

op = I: The data owner generates the encoded blocks
P!, ;4 for the new block m; and computes the tags o7 ;.
The new encoded blocks, the new tags are then sent to
the each corresponding server.

op = D: The data owner sends the deletion instruction
and the index i to the each corresponding server.

2) Update: After receiving the update request, each
server will adjust his own rb23Tree T} according to the
request. Fig.5 gives the examples of block insertion and
block deletion. According to the proof path 7;.(j € I)
received from each server, the data owner can construct a
partial rb23Tree and update the information on 7;(j €
I>) by himself. We use 7 new,:(j € I2) to denote the
new proof path the data owner maintains after updating
path 7;; himself. The data owner can compute a new
v(root)_new, according to the 7, pew:. In addition, we
use T to denote the new rb23Tree in the server ¢ after
updates. After adjustment, each server will send a new
path information 7} _,, or 7 ,, to the data owner
according to the new rb23Tree 7T}/. Then, the data owner
calls the Examine(v(root),, mj)7 = {(t = 1), (i +1)'})
to compute the new root value v(root); of T/, which
is further compared with the v(700t) new,: computed by
the data owner himself to verify the correctness of the
update request execution and the rb23Tree update.

v'(root) @k“

x+l

© k“:gf ks
O 0lo @

kg ki kg kg ks kyy ki k' ks kg ks

={k 3.ky5.k5)}

(a) Data block insertion.

v'(root) 9 k31

(2 ks b kzz

v(root) @ k31

=k 5ok ks)

13°72,2°

kikiz kyskig kyskys kg kikys ks kg
(b) Data block deletion.

Fig. 5. Example of data dynamic operation.

4.6 Data Recovery

By periodical integrity checking, the TPA may find out
the outsourced data is corrupted. Then, the TPA can

locate the corrupted fragments or failed server via binary
verification just like the binary search and return the
positions to the data owner.

When a server is still available but some small frag-
ments of data are corrupted, i.e., for the encoded block
Pz’tjq(lgign,lgtgs,l§j§s—k,1§q§s’),the
number of errors is less than [(s’ — k') /2], or the number
of erasures is less than s’ —k’. The server then can correct
the errors or erasures locally by the erasure codes, which
involves no communication cost, and there is no need to
recompute the metadata tags. When a server is down, the
data owner can execute the iterative recovery procedure
to recover the failure and generate new encoded blocks
and the corresponding metadata tags.

Iterative Recovery Procedure: The recovery process for
a permanent single-server data corruption is as follows:

1) Select s —1 ECVs randomly. Suppose the encoded
blocks of the m; on the server ¢ are corrupted, i.e.,
Pi/,t,1,17 T 7Pi/,t,l,s” o Pz/t s—k, 15" 7Pi/,t.,sfk,s"
The data owner selects s — 1 ECVs from encoded
matrix EM as follows: exclude the s — k ECV's
from (i—1)(s—k)+1to (i—1)(s—k)+s—k where
t=1,---,s.Foreach j =1,---,sand j # i, choose
one ECV from (j—1)(s—k)+1to (j—1)(s—k)+s—k
randomly. Then s — 1 ECVs are selected. Each
ECYV in the encoded matrix EM is corresponding
to one of the encoded blocks. We denote these
ECVsby ECV;,,ECV,,,--- ,ECV;__,

2) Generate a repair matrix. The data owner con-
structs a repair matrix RM = [y;;], where i =
1,---,s—k,j=1,---,5— 1. Each element ~; ; is
randomly selected from GF(2%).

3) Compute ECVs' for the new encode blocks and
generate a new encoding matrix EM’. The data
owner multiplies the RM generated in 2) with the
ECVs picked in 1) to construct s — k new ECVS,
which are denoted by ECV/ = 77- 1%JECV
for i = 1,2,---,s — k. Generate a new encoding
matrix denoted by EM’ as follows: when server
i(1 < i < s) is a healthy server the correspond-
ing s — k row vectors of EM’ is ECV;,, where
(t—1D(s—k)+1<j<(i—1)(s—k)+s—kand
each ECYV; is selected from the original £M. When
server i is corrupted, the corresponding s — k row
vectors of EM' are EC'V; where 1 < j < s — k.

4) Check whether both the MDS and repair MDS
properties are satisfied or not. If either check fails,
the data owner returns to 1) and repeats the above
steps.

5) Download the actual encoded blocks and regener-
ate new encoded blocks. Using the RM multiply
the s — 1 blocks selected from s — 1 servers corre-
sponding to the s —1 ECV s selected in 1) to gener-
ate new encoded blocks, which are encoded again
via a (¢, k')-erasure codes. The encoded blocks,
the corresponding metadata tags and rb23Tree are
stored in a new server.

Discussion. In our construction, every original data
block is encoded by the same encoding matrix KM and
the single-server data corruption recovery will gener-
ate a new encoding matrix EM’. Therefore, the blocks
encoded by EM cannot be decoded by EM’. Observ-
ing that the new encoding matrix EM’ contains ECV;
and ECV/, we adopt the incremental storage method
to solve this problem. In each round of single-server
data corruption recovery, we record the data corruption
server index, data block index, ECV; index and the new
ECV/ in a table. We store the original encoding matrix
EM and can generate the new encoding matrix EM’
by using EM and ECV;. When there are 1 < d < k
data corruption servers, we can download the encoded
blocks from any s—k healthy severs and decode them to
recover the original data blocks. We encode the original
data blocks again and upload the new encoded blocks
and the corresponding metadata tags and rb23Trees to
the servers.

Decoding Procedure: To access the original data blocks,
the data owner needs to decode the encoded blocks. The
data owner selects any % of the s storage servers and
downloads the k(s — k) encoded blocks from the & cloud
servers. Then, the data owner selects the corresponding
metadata object that contains the ECV's. The ECV's of
the k(s — k) encoded blocks can form a k(s —k) x k(s —k)
square matrix. If the MDS property is maintained, then
the inverse of the square matrix must exist. Therefore,
the data owner can multiply the inverse of the square
matrix with the encoded blocks to obtain the k(s — k)
native blocks. When there are d > k data corruption
servers, we cannot recover the original file. In this case,
the TPA and the data owner have known the data
corruption and can launch a lawsuit against the CSP.

5 SECURITY ANALYSIS
5.1 Correctness and Soundness

The correctness of the above verification protocol can be
elaborated as follows:

. G(Hieinj;‘/’ c2) ()’(HzEIU;i%v 9")
v —r rV;
HLI/;’q 7[1) ’ 6(H7j€](XPp”'H7ﬁ,l) 7.qll)

e,
=m-e i Pengg. "™ ot
=m- (,(HiE]Hm HiEI(X Hi)'"" gh)
= > TviPen t1
=m (/(HieIX . g)
=m-e(X, g)2ier vilen
=m-e(X (351)2,61 i Pen
=m- DBy
()
In Equation 5, Per, = P,y |l 1Py ol 1Py gl

“+||P/; o denotes the aggregate value of the total
s'(s — k) encoded blocks of data block m; on the server
t using both network coding and erasure codes. We use

the bilinear map property that for all ui,us,v € G,
e(ujug,v) = e(uy,v) - e(uz,v) to eliminate the H, ;.

As discussed above, our proposed verification proto-
col is based on the aggregatable signature-based broad-
cast (ASBB) scheme. In the Sign algorithm we compute
the signature 0 = X*h(8)" instead of ¢ = Xh(5)".
Correspondingly, in the Verify algorithm the verification
equation is e(o, g)e(h(8), R) = A®. The security of the
protocol can be reduced to the security of the scheme
in [18]. Take the signature scheme as an example, if
the adversary can forge a valid signature («,f,0) in
the present protocol with the public key (R, A), he can
forge a valid signature (s,0*) for the ASBB scheme
with the public key (R*"", A). However, the probability
is negligible [18].

Definition 2. Discrete Logarithm (DL) Problem:
Given g,¢" € G, it is hard to compute ¢ € Z,,.

Definition 3. Computational Diffie-Hellman (CDH)
Problem: Given g, g%, h € G for unknown ¢, it is hard
to compute h® € G.

Theorem 1. If the signature scheme used for file tags is
existentially unforgeable and the DL problem and the CDH
problem are hard, then if the cloud server does not possess the
specific data intact as it is, he cannot pass the audit phase
with non-negligible probability.

Proof. After the ChalGen stage, if the server can ob-
tain the value of ¢y, he can compute e(]‘[i6 I H;f;,cQ)
to recover the random element m according to the
wi = m - e([[;c;H{}, c2). Following the equation (4), the
server can know the B; which leak the information m
and B; that should only be known to TPA to the server.
However, it is hard to compute ¢; and ¢; = R" from
c1 = g" as the discrete logarithm problem is hard. Thus,
the server cannot compute and obtain cs.

Now we will prove if the adversary can cheat TPA
and pass the verification, then the CDH problem can
be broken by a simulator. Given g,¢",h € G and r is
unknown, the simulator’s goal is to output " € G.

The challenger keeps a list of its responses to TagGen
queries generated by the adversary. Now the challenger
observes each instance of the proof-of-retrievability pro-
tocol with the adversary. If in any of these instances the
adversary is successful (i.e. VerifyProof outputs 1) but
the adversary’s aggregate signature o; is not equal to
2 (i,0n)echat Oi (Where chal is the challenge issued by the
verifier and o, ; is the metadata tag on the blocks of the
file considered in the protocol instance) the challenger
declares failure and aborts.

Suppose chal = (i, v;) is the query that causes the chal-
lenger to abort, and the adversary’s responses to com-
pute the m; are (y;, 07, H},). Let the expected responses-
i.e., the one that would have been obtained from an
honest prover-be (u:,0¢, H;), where iy =), viPep,
or = [lier o—fft and H,;; = h(fid||P.,). Because of the
authentication in rb23Tree, the H, should be the same
with H, ;. Otherwise, the Examine(v(root),,m; ;) algo-
rithm will output False directly.

With this adversary, a simulator [10] could break the

CDH problem instance as follows: The simulator ran-
domly chooses values 3,7 € Z, and sets X = g*h7.
For each i, 1 < i < n, The simulator selects a random
value r; € Z,, and programs the random oracle at i
as H;y = g"i/(g°Fen - h7Fen). Now the simulator can
compute the o;; as follows.

oip = (XPrHiy) = (g")" (6)

By the correctness of the scheme, we know that the
expected response satisfies the verification equation, i.e.,
that

B; = e(X,c3) = e(0y,¢1) - e(H HY,e2) 7)

iel
Because the challenger aborted, we know that o, # o}
and that o} passes the verification equation, i.e., that

B =e(X, Cgl)lt: =e(o},c1) - G(H Hi*,tvich)
iel

8)

Obviously, u: # uy, otherwise, o = of, which contra-
dicts our assumption above.

We can define Ay, = pui — py # 0. From equation (8)
and (7), we can get:

e(X,ca M)A = e(o] Jor,¢1) &
e(X, g™ = e(o] o1, 9")
XA = g% oy &

(g°n7) 20 = o7 Joy &

W = (07 for - (g7) P Y G200

meaning the simulator can output the A" € G, which
contradicts the CDH problem. That is to say there is no
or # o; to make o} pass the verification equation to
abort the protocol.

From the above process, we can conclude that o, = o;.
It is only the values ji; and py that can differ and cause
the abortion of the protocol. We also define Ay = pj —
pt # 0. The simulator answers the adversary’s queries
until the protocol is aborted. Then given g,h € G, the
simulator can break the discrete logarithm problem as
follows.

The simulator still randomly chooses values 3,y € Z,
and sets X = g“h". According to the equation (8) and
(7) and o} = 04, we can get:

©)

e(X, 02_1)‘“ =e(X, 02_1)“: &
X,U«t — Xl": &
XA =1 &
(gﬁh'y)Aut -1
- -1
h=g BAp:(vApe)

(10)

meaning the simulator can output = —BAu (yAu) !

which satisfies h = g%, i.e. the simulator breaks the
discrete logarithm problem. That is to say there is no
oy = of and p; # pf to make o pass the verification
equation and abort the protocol. O

10

5.2 Root Node Information Protection

The tag value v(root), of root node is the key factor to
verify one leaf node is indeed stored at the specified po-
sition. In [7], when the TPA launches a data verification,
the CSP can trick TPA by using any other blocks instead
of the ones to be checked. The successful of this attack
is caused by the lack of data position verification in the
existing solutions. The use of rb23Tree can prevent this
attack by running the Examine(v(root),, ;) algorithm
to guarantee the positions of the data blocks to be sam-
pled are correct. After each update operation, the data
owner or the TPA can calculate the new v(root) pew,: by
itself. Then by comparing the two values v(root) pew.t
and v(root); computed by the new proof path «;_,, or
7,41+ according to the new rb23Tree T}, the data owner
or the TPA can make sure whether the CSP executes
the update request and sends back the specified blocks
honestly or not.

Moreover, due to the authentication in the rb23Tree
and the maintainance of the v(root); of the root node,
our scheme can also prevent the replay attack discussed
in [22]. That is, the adversary’s attempts to reuse old
encoded blocks in order to reduce the redundancy on
the storage servers, which makes the original data be-
comes unrecoverable. Consider a pollution attack [22],
i.e., corrupted servers use correct data to avoid detection
in the challenge phase, but provide corrupted data for
coding new blocks in the repair phase. To prevent this
attack, they need to encrypt the encoding coefficients
and generate repair verification tags. In our scheme,
the within-server corruption is handled by the cloud
server to save communication cost and the cross-server
corruption is handled by the data owner itself. Because
the data owner maintains the v(root):, he can detect the
pollution attack by the authentication of the rb23Tree.

5.3 Data Retrievability

Theorem 2. Suppose a cheating prover on an n-block file F is
well-behaved in the sense above, and that it is e-admissible. Let
w=1/#B+ (pn)*/(n — c + 1)°. Then, provided that ¢ — w
is positive and non-negligible, it is possible to recover a p-
fraction of the encoded file blocks in O(n/(e— p)) interactions
with cheating prover and in O(n* 4+ (1 + en?)(n)/(e — w))
time overall.

Proof. The verification of the proof-of-retrievability is
similar to [10], we omit the details of the proof here. The
difference in our work is to replace H (i) with H;, such
that secure update can still be realized without including
the index information. These two types of tags are used
for the same purpose (i.e., to prevent potential attacks),
so this change will not affect the extraction algorithm
defined in the proof-of-retrievability. We can also prove
that extraction always succeeds against a well-behaved
cheating prover, with the same probability analysis given
in [10]. O

Definition 4. Epoch: Suppose that the adversary can
corrupt at most s — k out of s servers within any given

time interval. We define such a time interval as an epoch.

Definition 5. Data recovery condition: In any given
epoch, the original data can be recovery as long as
at least k& out of s servers collectively store at least n
encoded blocks which are linearly independent combi-
nations of the original n data blocks.

Theorem 3. The data recovery condition is a sufficient con-
dition to ensure data recoverability in our scheme augmented
with protection against small data corruption.

Proof. The proof is similar to [22]. We give the proof
briefly as follows. In the initial state, the network coding
guarantees that the original data can be recovered from
any k out of s servers with high probability. We want to
show that our scheme preserves this guarantee through-
out its lifetime, thus ensuring data recoverability.

In any given epoch, the adversary can corrupt at
most s — k servers. The adversary may split the corrup-
tions between direct data corruptions and replay attacks.
Faulty servers affected by direct data corruptions can be
detected by the integrity checks in the challenge stage,
or by the correct encoding check in the recovery stage.
The data owner uses the remaining surviving servers (at
least k) to regenerate new encoded blocks to be stored on
new servers. Due to the authentication of rb23Tree, the
replay attack and pollution attack can be detected and
prevented. Thus, at the end of the epoch, the system is
restored to a state equivalent to its initial state, in which
the data can be recovered from any & out of the s servers.

Theorem 4. Given a fraction of the n blocks of an encoded
file F, it is possible to recover the entire original file F with all
but negligible probability.

Proof. In Theorem 3, we prove the data recovery
condition for the network coding is a sufficient condition
to ensure data recoverability. And for the erasure codes,
based on the rate-p Reed-Solomon codes, this result can
be easily derived, since any p-fraction of encoded data
blocks suffices for decoding. O

6 EXPERIMENT AND EVALUATION
6.1 Experiment Environment

We implement our proposed scheme using C language
on a Linux system Ubuntu 10.04, with Intel Core (TM)
2 Quad CPU running at 2.67GHz, 2.00GB of RAM.
We utilize Pairing-Based Cryptography (PBC) library
version 0.5.7 and OpenSSL0.9.8 for implementation. The
elliptic curve utilized in the experiment is a MNT curve,
with base field size of 159 bits and the embedding degree
6. The security level is chosen to be 80 bits, which means
|v;| = 80 and |p| = 160.

6.2 Encoding/Decoding and Recovery Time

We first test the time cost of encoding, decoding and
recovery operations. Our results are all averaged over
20 rounds.

The encoding and decoding time for different sizes of
files are illustrated in Figure 6 and Figure 7, respectively.

11

Figure 8 shows the single server failure recovery time
and single block corruption recovery time for different
sizes of files. In Fig. 6, Fig. 7 and Fig. 8, the parameters
(s, k) of FMSR and (s', k') of R-S codes are set to be (4,2).
As expected, the encoding, decoding and recovery time
of FMSR and R-S codes increases with the file size. The
time of encoding/decoding the same file for FMSR and
R-S codes is almost the same. Due to the characteristics
of the encoding schemes, the recovery time of FMSR is
less than R-S codes. In FMSR, the original data can be
reconstructed from the encoded blocks contained in any
k of the s servers while for R-S codes to generate an
encoded data block all the s original data blocks need to
be reconstructed.

70

[IrR-s
I FMSR

60F
50
& 40
g
= 30r
20
10

1 5 10 50 100 200 300

20
File size (MB)

Fig. 6. Encoding time for different file sizes.

30,

25
Z 20
()

i= 15|

1 5 10 20
File size (MB)

50 100 200 300

Fig. 7. Decoding time for different file sizes.

[IRrR-s parity
[CJR-s native
12 | I FVSR

1 5 10 50 100 200 300

20
File size (MB)
Fig. 8. Single server/block Recovery time for different file
sizes.

We also evaluate the running time of one data block
for different (s, k) values of FMSR and different (s, k')
values of R-S codes. The results are shown in Fig. 9 and
Fig. 10, respectively. In both Fig. 9 and Fig. 10, the block
sizes are set to be 4KB. As shown, the running time
increases when the parameters (s, k) and (s, k') increase.

The reason is that more subblocks have to be processed
when the parameter (s, k) or (s, k) becomes larger.

18
[_JRecoven
[IDecoding|
1.4+ | Encoding|

1.6r

(4,2) (8,63

(12,10)

Fig. 9. Running time of different (s,k) values of FMSR.

[_IParity blocks repair
0.25 [INative blocks repai
[Decoing
02k Il Encoding

O 255,229) (255,232) (255,24(13) k(1)15,100) (110,100) (105,100)

Fig. 10. Running time of different (s’,k’) values of R-S
code.

6.3 The rb23Tree Generation Time and Storage
Overhead

We show the time cost and storage cost under different
file sizes in Table 2. The block size is set to be 4KB. Then
given a file, the height of the rb23Tree is only related
to the file size and the number of blocks. So, the height
determines the time of generating an rb23Tree and the
storage overhead.

TABLE 2
Time and storage cost of different files.

File size(MB) 64 128 256 512 1024
rb23Tree Height 10-15 11-16 11-17 12-18 13-19
Time cost(s) 0.990 1.908 4180 7.511 15.946

Storage cost(MB) 1.125-1.5 2.25-3.0 4.5-6.0 9.0-12.0 18.0-24.0

From Table 2, we can see the time cost of generating
an rb23Tree and storage cost is approximately linear
with the file size. In our experiment the rb23Tree is
generated randomly. Thus both the height and node
number are undetermined while the value ranges are
determined. We use notation [X] to denote the minimum
positive integer that is not less than positive integer
X. Then the height of rb23Tree satisfies [logzn] + 1 <
height < [logan] + 1 and the node number satisfies
[(Bn—1)/2] < num < 2n — 1.

12

6.4 Update Operation Overhead

We choose randomly 1000 blocks to execute the modi-
fication, insertion, deletion operations for different files
and calculate the average time of operations for different
data types. The results are shown in Fig. 11.

The results show that when there is an update oper-
ation, the leaf node and the information on the proof
path will be changed. The rb23Tree will be also adjusted
to keep the tree as an rb23Tree, and the length of
proof path is determined by the height of rtb23Tree. In
the modification operation, since there is no rb23Tree
adjustment, the modification cost is only related to the
height. In the insertion/deletion operation, there exists
rb23Tree adjustment which is determined by the type of
the operated node. So there exist some fluctuations even
if the heights are the same. In any case, the time cost can
be maintained in the microsecond level, which shows the
efficiency of our proposed protocol.

———

I

—a— Modification|
—e— Insertion
—v— Deletion

512 1024

Time (us)
Now
a o

N
o

N
@

1
%4 128 256
File size (MB)

Fig. 11. Update operation overhead of rb23Tree.

6.5 Verification Cost

Now we evaluate the running time of the verification
operation. For TagGen, we chooses 5 files with sizes of
128MB, 256MB, 512MB, 1024MB and 2048MB, respec-
tively. Each data block is set to be 4KB. For each file, we
generate the tags 10 times and compute the time average.
The experiment results are shown in Fig. 12. We can see
that it will take time to generate the metadata tags for the
data files. However, the TugGen algorithm is only a one-
time cost in the initialization process, and in the process
of data updates only metadata of some data blocks are
generated in stead of the whole file.

In our data integrity check process, we also need to
verify the hash values of blocks and the proof path.
As shown in [6], when there exists 1% data corruption
and the sampled blocks are chosen randomly, TPA will

?28 256 1024 2048

512
File size (MB)

Fig. 12. TagGen time.

identify the corruption with a probability up to 95% and
99% by sampling 300 and 460 blocks, respectively. Hence,
we follow the same strategy and also sample 300 and
460 blocks to evaluate the verification cost with a file of
1GB. We compare the time cost of our scheme with [10]
and [11]. Note that we set the sector number s in [10] to
be 1 to evaluate all schemes under the same benchmark.
The results of performance comparison are shown in
Table 3. As shown, although there are additional hash
value and proof path checks, the whole verification
cost of our scheme is almost the same as that of [10]
and [11], which means our proposed scheme is efficient
and practical for use in cloud storage systems. We next
analyze the communication cost. The communication
cost of the verification protocol is determined by the
file size and the number of sampled blocks. Compared
with [11], the additional communication overhead of
our scheme is 40Bytes and the proof path. The size of
each mark structure is 96Bytes. For a file of 1GB, the
height of rb23Tree is 15, and the size of proof path
is 1440Bytes. For one block verification operation, the
additional communication overhead of our scheme is
1480Byte (about 1.45KB) for each block. For one block
update operation, the communication overhead is about
6KB. Both these overheads are very small and acceptable
in practice.

6.6 Scheme Comparisons

We compare our scheme with some other existing well-
known schemes in Table 4 on the whole. In the Table 4,
n is the number of the data blocks, ¢ denotes the size
of the client data and A is the security parameter. As
shown, most of existing schemes do not support data
dynamics when the data is encoded. And those schemes
supporting data dynamics usually only consider the data
recovery in single cloud server and the multiple cloud
servers or single cloud server failure scenarios are out
of consideration. Our proposal takes both the multiple
cloud servers and single cloud server failure into con-
sideration and supports the encoded data dynamics. The
update complexity of our scheme is logarithmic as the
update complexity of rb23Tree is logarithmic and the
update only involves the update of node information on
the proof path. The length of the proof path is related
to the file size(the rb23Tree height). Our scheme also
balances the communication cost and storage overhead.
We can save 25% communication cost comparing with
the schemes using erasure codes as outer code and 50%
storage overhead comparing with the scheme adopting
replication as data redundancy. Therefore, our scheme
achieves more efficient data update and data recovery
than most of the existing solutions.

7 CONCLUSION

In this paper, we proposed a new dynamic proof of
retrievability scheme for coded cloud storage systems.

13

Network coding and erasure codes are adopted to en-
code data blocks to achieve within-server and cross-
server data redundancy, tolerating data corruptions and
supporting communication-efficient data recovery. By
combing range-based 2-3 tree and an improved ver-
sion of aggregatable signature-based broadcast (ASBB)
encryption, our construction can support efficient data
dynamics while defending against data replay attack
and pollution attack. Security analysis and experimental
evaluations demonstrated the practicality of our con-
struction in coded cloud storage systems.

ACKNOWLEDGMENTS

This work is supported by the National Nature Science
Foundation of China(No.61373169, 61373167, 61103219),
the National Basic Research Program of China (973
Program No.2014CB340600) and the Doctoral Fund of
the Ministry of Education priority areas of development
projects (No.20110141130006).

REFERENCES

[1] P Mell and T. Grance, “Draft Nist Working
Definition of Cloud Computing,” National In-
stitute of Standards and Technology, Tech. Rep.

http:/ /csre.nist.gov/groups/SNS/cloudcomputing /index.html,
2009.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, RH. Katz,
A.Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the Clouds: A Berkeley View of Cloud
Computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.

[3] Amazon.com, “Amazon S3 Availability Event: July 20, 2008,”
http:/ /status.aws.amazon.com/s3-20080720.html, July 2008.

[4] S. Wilson, “Appengine Outage,” http://www.cioweb-
log.com /50226711 /appengine outage.php, June 2008.

[5] B. Krebs, “Payment Processor Breach May Be Largest Ever,”
http:/ /voices.washingtonpost.com/securityfix/2009/01/payment
_processor_breach_may_b.html, 2009.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable Data Possession at Untrusted Stores,”
Proc. 14th ACM Conf. Computer and Comm. Security (CCS’07), pp.
598-609, 2007.

[7 Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamic for Storage Security in Cloud
Computing,” Proc. 14th European Symp. Research in Computer Se-
curity (ESORICS’09), pp. 355-370, 2009.

[8] A. Juels and B.S. Kaliski, “PORs: Proofs of Retrievability for
Large Files,” Proc. 14th ACM Conf. Computer and Comm. Security
(CCS'07), pp. 584-597, 2007.

[9] C.Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” Proc. 16th ACM Conf. Computer and
Comm. Security (CCS’09), pp. 213-222, 2009.

[10] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. 14th Int'l Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (ASIACRYPT'08), pp.
90-107, 2008.

[11] C, Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing,”
Proc. 29th Annual IEEE Int’l Conf. Computer Comm. (INFOCOM'10),
pp- 525-533, 2010.

[12] Y. Zhu, H. Wang, Z. Hu, G.J. Ahn, H, Hu, and S.S. Yau, “Coop-
erative Provable Data Possession,” Report 2010/234, Cryptology
ePrint Archive, 2010.

[13] Y. Zhu, H. Wang, Z. Hu, G.J. Ahn, H. Hu, and S.S. Yan, “Dynamic
Audit Services for Integrity Verification of Outsourced Storages in
Clouds,” Proc. 26th Symp. Applied Computing (SAC'11), pp.1550-
1557, 2011.

14

TABLE 3
Verification cost of proposed scheme compared with Ref [10] and Ref [11].

Proposed scheme Ref [10] Ref [11]
Sampled blocks ¢ 300 460 300 460 300 460

Path generation (ms) 1.093 1.172 N/A N/A N/A N/A

Path verification (ms) 5.431 8.325 N/A N/A N/A N/A
ChalGen (ms) 447.575 696.541 238.179 345.029 231.799 352.257
ProofGen (ms) 223.481 347.165 225.892 352.293 234.018 349.738
VerifyProof (ms) 1.435 1.435 236.295 352.514 266.724 368.085

TABLE 4

Scheme comparisons.

Within-server encoding Cross-server encoding Supporting data dynamics Update complexity Repair traffic factor

Proposed scheme erasure code network coding Yes O(logn) 15
Ref [10] erasure code N/A No N/A N/A
Ref [21] erasure code erasure code No N/A 2
Ref [22] N/A network coding No N/A 1.5
Ref [25] N/A LT code No N/A 1
Ref [26] erasure code network coding No N/A 15
Ref [27] erasure code N/A Yes O()\2 X logzé) N/A
Ref [15] erasure code N/A Yes O(logn) N/A

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

G. Ateniese, R. Burns, R. Curtmola,]. Herring, O. Khan, L.
Kissner, Z. Peterson, and D. Song, “Remote Data Checking Using
Provable Data Possession,” ACM Transactions on Information and
System Security, vol. 14, no. 1, pp. 12-34, 2011.

Q. Zheng and S. Xu, “Fair and Dynamic Proofs of Retrievability,”
Proc. First ACM Conf. Data and Application Security and Privacy
(CODASPY’11), pp. 237-248, 2011.

S. Wang, D. Chen, Z. Wang, and S. Chang, “Public Auditing
for Ensuring Cloud Data Storage Security with Zero Knowledge
Privacy,” Report 2012/365, Cryptology ePrint Archive, 2012.

B. Chen, and R. Curtmola, “Towards Self-Repairing Replication-
Based Storage Systems Using Untrusted Clouds,” Proc. third ACM
Conf. Data and Application Security and Privacy (CODASPY’13), pp.
377-388, 2013.

Q. Wu, Y. Mu, W. Susilo, B. Qin, and].D. Ferrer, “Asymmetric
Group Key Agreement,” Proc. 28th Annual Int’l Conf. Theory and
Applications of Cryptography Techniques (ELLIROCRYPT'09), pp. 153-
170, 2009.

Y. Hu, H.C.H. Chen, PP.C. Lee, and Y. Tang, “NCCloud: Applying
Network Coding for the Storage Repair in a Cloud-of-Clouds,”
Proc. 10th USENIX Conf. File and Storage Technologies (FAST’12),
pp- 265-273, 2012.

H.P. Anvin, “The Mathematics of RAID-6,”
http:/ /kernel.org/pub/linux/kernel/people/hpa/raid6.pdf,
2007.

K.D. Bowers, A. Jules, and A. Oprea, “HAIL: A High-Availability
and Integrity Layer for Cloud Storage,” Proc. 16th ACM Conf.
Computer and Comm. Security (CCS’09), pp. 187-198, 2009.

B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data
Checking for Network Coding-Based Distributed Storage Sys-
tems,” Proc. 2010 ACM Workshop on Cloud Computing Security
Workshop (CCSW’10), pp. 31-42, 2010.

Y. Zhu, H. Wang, Z. Hu, G.J. Ahn, and H. Hu, “Zero-knowledge
Proofs of Retrievability,”, Science China: Information Sciences, vol.
54, no. 8, pp. 1608-1617, 2011.

E. Stefanov, M.V. Dijk, A. Oprea, and A. Jules, “Iris: A Scal-
able Cloud File System with Efficient Integrity Checks,” Report
2011/585, Cryptology ePrint Archive, 2011.

N. Cao, S. Yu, Z. Yang, W. Lou, and Y.T. Hou, “LT Codes-based
Secure and Reliable Cloud Storage Service,” Proc. 31st Annual

IEEE Int’l Conf. Computer Comm. (INFOCOM'12), pp. 693-701,
2012.

[26] H.C.H. Chen and PP.C. Lee, “Enabling Data Integrity Protection

in Regenerating-Coding-Based Cloud Storage,” Proc. 31st Int’l
Symp. Reliable Distributed Systems (SRDS’12), pp. 51-60, 2012.

[27] D. Cash, A. Kupcu, and D. Wichs, “Dynamic Proofs of Retriev-

ability via Oblivious RAM,” Proc. 32nd Annual Int’l Conf. Theory
and Applications of Cryptographic Techniques (EUROCRYPT13), pp.
279-295, 2013.

[28] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the

Weil Pairing,” Journal of Cryptology, vol. 17, no. 4, pp. 297-319,
2004.

[29] LS. Reed and G. Solomon, “Polynomial Codes over Certain Finite

Fields,” Journal of the Society for Industrial and Applied Mathmatics,
vol. 8, no. 2, pp. 300-304, 1960.

[30] A.G Dimakis, P.B. Godfrey, Y. Wu, M.]. Wainwright, and K. Ram-

chandran, “Network Coding for Distributed Storage Systems,”
IEEE Transaction on Information Theory, vol. 56, no. 9, pp. 4539-
4551, 2010.

[31] D. Boneh and C. Gentry, “Aggregate and verifiably encrypted sig-

natures from bilinear maps,” Proc. of International Conference on the
Theory and Applications of Cryptographic Techniques (Eurocrypt'03),
pp. 416-432, 2003.

Zhengwei Ren received his Ph.D degree from
Wuhan University, Wuhan, China, in 2014. His
research interests are in the areas of applied
cryptography and information security, with cur-
rent focus on data security in cloud computing.

Lina Wang is a professor in Key Labora-
tory of Aerospace Information Security and
Trusted Computing, Ministry of Education, and
School of Computer, Wuhan University, Wuhan,
China. She received the Ph.D. degree in com-
puter science from the Northeastern University,
Shenyang, China, in 1999. Her research inter-
ests include information security and applied
cryptography, with the current focus on security
and privacy in cloud computing.

Qian Wang received the B.S. degree from
Wuhan University, China, in 2003, the M.S. de-
gree from Shanghai Institute of Microsystem and
Information Technology, Chinese Academy of
Sciences, China, in 2006, and the Ph.D. de-
gree from lllinois Institute of Technology, USA,
in 2012, all in Electrical Engineering. Currently,
he is a faculty member with the School of Com-
puter Science, Wuhan University. His research
interests include wireless network security and
privacy, cloud computing security, and applied

cryptography. He is a co-recipient of the Best Paper Award from |IEEE
ICNP 2011. He is a Member of the IEEE and a Member of the ACM.

Rongwei Yu is a lecturer in School of Computer,
Wuhan University, Wuhan, China. He received
his Ph.D degree from Wuhan University in 2009.
His current interests are in the areas of virtual-
ization security and network security.

Ruyi Deng received his B.E degree from
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2012. He is currently a
master student in School of Computer at Wuhan
University.

15

	Introduction
	Related Work
	System Model and Security Requirement
	Public Cloud Storage Auditing Architecture
	Public Auditing Model for Coded Cloud Storage
	Adversarial Model and Security Requirements
	Preliminaries on Redundancy Approaches for Data Recovery

	Our Construction
	Overview
	Encoding
	Initialization
	Data Integrity Verification
	Secure Data Updates
	Data Recovery

	Security Analysis
	Correctness and Soundness
	Root Node Information Protection
	Data Retrievability

	Experiment and Evaluation
	Experiment Environment
	Encoding/Decoding and Recovery Time
	The rb23Tree Generation Time and Storage Overhead
	Update Operation Overhead
	Verification Cost
	Scheme Comparisons

	Conclusion
	References
	Biographies
	Zhengwei Ren
	Lina Wang
	Qian Wang
	Rongwei Yu
	Ruyi Deng

