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  Abstract-- In this study, an efficient addressing scheme for 
radix-4 FFT processor is presented. The proposed method uses 
extra registers to buffer and reorder the data inputs of the 
butterfly unit. It avoids the modulo-r addition in the address 
generation; hence, the critical path is significantly shorter than 
the conventional radix-4 FFT implementations. A significant 
property of the proposed method is that the critical path of the 
address generator is independent from the FFT transform 
length N, making it extremely efficient for large FFT 
transforms. For performance evaluation, the new FFT 
architecture has been implemented by FPGA (Altera Stratix) 
hardware and also synthesized by CMOS 0.18µm technology. 
The results confirm the speed and area advantages for large 
FFTs. Although only radix-4 FFT address generation is 
presented in the paper, it can be used for higher radix FFT. 

I. INTRODUCTION 
Fast Fourier transform (FFT) is one of the key components 

for various signal processing and communications applications 
such as software defined radio [1] and OFDM [2]. A typical 
FFT processor is composed of butterfly calculation units, an 
address generator and memory units. This study is primarily 
concerned with improving the performance of the address 
generation unit of the FFT processor by eliminating the 
complex critical path components.  

Pease [3] observed that the two data addresses of every 
butterfly differ in their parity. Parity check can be realized by 
modulo-r addition in hardware. Based on Pease’s observation, 
Cohen [4] proposed a simplified control logic for radix-2 FFT 
address generation.  Johnson [5] proposed a similar way to 
realize radix-r FFT addressing. In this method, the address 
generator is composed of several counters, barrel shifters, 
multiplexers and adder units. Other FFT processors [2,6] have 
been designed to realize high-radix FFT. A common drawback 
of all these methods is the need for successive addition 
operations to realize the address generation. The number of 
addition operations depends on the length of the FFT, so the 
address generation speed is slower as the FFT transform 
length increases. Several methods have been proposed to 
avoid the addition for radix-2 FFT [7,8] but these methods 
cannot be used for higher radix FFT.  

This study presents a new architecture to realize the 
address generation for radix-4 FFT. The new address 
generator is composed of counters, barrel shifters, 
multiplexers and registers, but no addition operation is 
required. The critical path of the address generator is shorter, 
and furthermore, the critical path of this address generator is 
independent of the FFT length making it extremely efficient 
for long length FFT. 

II. RADIX-4 FFT 
The N-point discrete Fourier transform is defined by 
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The N-point FFT can be decomposed to repeated micro-
operations called butterfly operations. When the size of the 
butterfly is r, the FFT operation is called a radix-r FFT. For 
FFT hardware realization, if only one butterfly structure is 
implemented in the chip, this butterfly unit will execute all 
the calculations recursively. If parallel and pipeline 
processing techniques are used, an N point radix-r FFT can be 

executed by N
r
N

rlog  clock cycles. This indicates that a 

radix-4 FFT can be four times faster than a radix-2 FFT. Fig. 
1 shows the signal flow graph of 64-point radix-4 FFT, and 
Fig. 2 shows the general structure of the radix-4 butterfly. For 
hardware realization of FFT, multi-bank memory and "in-
place" addressing strategy are often used to speed-up the 
memory access time and minimize the hardware 
consumption. For radix-r FFT, r banks of memory are needed 
to store data, and each memory bank could be two-port 
memory. With "in-place" strategy, the r outputs of the 
butterfly can be written back to the same memory locations of 
the r inputs, and replace the old data. In this case, to realize 
parallel and pipelined FFT processing, an efficient addressing 
scheme is needed to avoid the data conflict. A popular 
addressing scheme for radix-r (r>2) was presented by 
Johnson [5], however due to the modulo-r addition, this 
method is slow and the speed depends on the length of FFT. 
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Figure 1. 64-point FFT using radix-4 butterfly units 

 

 
 

 
Figure 2. Butterfly structure of radix-4 FFT 

 
 

 

TABLE I. ADDRESS SEQUENCES FOR THE FIRST REGISTER SET (R0-R15) 

 

TABLE II. ADDRESS SEQUENCES FOR THE   SECOND REGISTER SET (R16-R31) 

 

III. PROPOSED METHOD 
This study presents a new addressing scheme for radix-r 

FFT, which avoids complex addition steps in the address 
generation unit at the expense of more registers and 
multiplexers.  

In proposed approach, four memory banks are used to store 
the data, as shown in Figure 1. In pass 0, four inputs and four 
outputs of any butterfly stage belong to different memory 
banks. However, for pass 1 and pass 2, four inputs and four 
outputs of any butterfly stage belong to same memory bank. 
Since each memory bank is a two-port memory, at each clock 
cycle, each memory bank can export (read) once and import 
(write) once. Four clock cycles are necessary to perform four 
read and four write accesses in pass 1 and pass 2. Ideally, in 
four clock cycles, 16 imports and 16 exports can be 
accomplished in the four memory banks. This can facilitate 
four radix-4 butterfly operations to be executed in four clock 
cycles. For 100% utilization of the butterfly unit as described 
above, two sets of registers are necessary to buffer these data. 
Each set contains 16 registers; the first register set (register 0 
to register 15) is employed to buffer the outputs of the 
memory units before they are imported to the butterfly unit, 
and the second register set (register 16 to register 31) is used 
to buffer the outputs of the butterfly unit before they are 
imported to the memory banks. Eight 16-to-1 multiplexers are 
used in each set to re-order the data for avoiding any data 
conflict.  
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Figure 3. Address generation circuit for Radix-4 FFT 

Fig. 3 shows the proposed scheme for N-point radix-4 
FFT processor. Table I lists the address sequence of the first 
register set, whereas Table II lists the address sequence of the 
second register set (assume the butterfly calculation delay is 
four clock cycles). Together, they present the address 
sequence order for pass 1 of 64-point radix-4 FFT. For other 
passes, the sequence tables for the register sets are similar. 
Tables I and II show that for different clock cycles, the data 
in the registers follow a very regular sequence and the 
hardware components to realize these sequences are very 
simple: After logic minimization, it results in only primitive 
logic gates such as AND/OR gates using the least significant 
three bits of the butterfly counter B (see Fig. 3).  

Other main components of the FFT processor are 
Counter D and the barrel shifter. Counter D has two parts; 
pass counter P which is v=log4N bits (Pv-1 to P0) and butterfly 

counter B which is ⎥⎥
⎤

⎢⎢
⎡=

4
log2

Nm  bits (Bm-1 to B0).  

The barrel shifter generates all the addresses for four 
memory banks based on the pass number of the FFT, which 
can be expressed as:  

RR(counter B, 2p)    (2) 

where RR(counter B, 2p) means rotate-right butterfly counter 
B by 2p bits, and p is the pass number of FFT. 

For twiddle factors Wb, Wc and Wd, three memory banks 
are used with same address generation logic. For pass p, this 
address is given as: 

0...000... 221 pmm BBB −−       (2p 0’s follow)      (3) 
For different length FFT transforms, the control logic of the 
multiplexers only depends on the last three bits of the counter 
(see Fig. 3), so the register and multiplexer structures are 
fixed for different length FFTs resulting in a common 
architecture for any N-point FFT.  
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 TABLE III. SYNTHESIS RESULTS WITH CMOS 0.18µm TECHNOLOGY FOR DIFFERENT LENGTH FFT                                                                                           
(32-BIT COMPLEX DATA: 16-BIT EACH FOR THE REAL AND IMAGINARY PART) 

 
 
 
Table III shows Synopsys Design Compiler synthesis results 
using TSMC CMOS 0.18µm technology. For different length 
FFTs, the memory usage scales proportional to transform 
length, but the address generation circuit sizes are almost 
same; confirming that method is extremely efficient for long 
length FFT transforms. Compared to a radix-2 FFT 
implementation given in [8], the throughput is faster by a 
factor of 4.  

IV. CONCLUSION 
The proposed method for radix-4 FFT avoids any addition in 
the address generation, enabling a fast datapath for butterfly 
operations. The same concept can be extended to any radix 
FFT, but the amount of registers and multiplexers for 
different radix FFT will be different: For radix-r FFT, 22r  
registers and 4r  multiplexers are needed. 

 

 

 

REFERENCES 
[1] S. Mittal, Z.A. Khan, and M.B. Srinivas, “Area efficient high speed 

architecture of Bruun's FFT for software defined radio”, IEEE Global 
Telecommunications Conference GLOBECOM '07, pages 3118 -3122, 
November 2007. 

[2] L. Xiaojin, L. Zongsheng Lai, and C. Jianmin Cui, “A low power and 
small area FFT processor for OFDM demodulator”, IEEE Transactions 
on Consumer Electronics, 53(2):274-277, May 2007. 

[3] M. C. Pease, “Organization of large scale Fourier processors”, J. Assoc. 
Comput. Mach., 16:474–482, July 1969. 

[4] D. Cohen, “Simplified control of FFT hardware”, IEEE Trans. Acoust., 
Speech, Signal Processing, 24:577-579, December 1976. 

[5] L.G. Johnson, “Conflict free memory addressing for dedicated FFT 
hardware”,  IEEE Trans. Circuits Syst. II, vol. 39, pp. 312-316, May 
1992. 

[6] J.H. Takala, T.S. Jarvinen, and H.T. Sorokin, “Conflict-free parallel 
memory access scheme for FFT processors”, Proc. of the International 
Symposium on Circuits and Systems, ISCAS '03, vol. 4, pages 524-527, 
May 2003. 

[7] Y. Ma, “An effective memory addressing scheme for FFT processors”, 
IEEE Trans. on Signal Process,47(3): 907–911, March 1999. 

[8] X. Xiao, E. Oruklu, J. Saniie, “An Efficient FFT Engine With Reduced 
Addressing Logic”, IEEE Transactions on Circuits and Systems II  
Express Briefs, vol. 55, no 11,  pp. 1149 - 1153, November 2008. 
 

 

 64-point FFT 256-point FFT 1024-point FFT 

Area 

Total 
Memory + 
Butterfly 

units 

Address 
Generation 

unit 
Total 

Memory + 
Butterfly 

units 

Address 
Generation 

unit 
Total 

Memory + 
Butterfly 

units 

Address 
Generation 

unit 

36662 
cells 

27591       
cells 

9071      
cells 

65547 
cells 

56915  
cells 

8632    
cells 

176746 
cells 

168199   
cells 

8547 
cells 

Delay 5.47 ns 5.49 ns 5.48 ns 

440

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:58:36 UTC from IEEE Xplore.  Restrictions apply. 


