
Fast Memory Addressing Scheme
for Radix-4 FFT Implementation

Xin Xiao, Erdal Oruklu and Jafar Saniie
Department of Electrical and Computer Engineering

Illinois Institute of Technology
Chicago, Illinois, 60616

erdal@ece.iit.edu

 Abstract-- In this study, an efficient addressing scheme for
radix-4 FFT processor is presented. The proposed method uses
extra registers to buffer and reorder the data inputs of the
butterfly unit. It avoids the modulo-r addition in the address
generation; hence, the critical path is significantly shorter than
the conventional radix-4 FFT implementations. A significant
property of the proposed method is that the critical path of the
address generator is independent from the FFT transform
length N, making it extremely efficient for large FFT
transforms. For performance evaluation, the new FFT
architecture has been implemented by FPGA (Altera Stratix)
hardware and also synthesized by CMOS 0.18µm technology.
The results confirm the speed and area advantages for large
FFTs. Although only radix-4 FFT address generation is
presented in the paper, it can be used for higher radix FFT.

I. INTRODUCTION
Fast Fourier transform (FFT) is one of the key components

for various signal processing and communications applications
such as software defined radio [1] and OFDM [2]. A typical
FFT processor is composed of butterfly calculation units, an
address generator and memory units. This study is primarily
concerned with improving the performance of the address
generation unit of the FFT processor by eliminating the
complex critical path components.

Pease [3] observed that the two data addresses of every
butterfly differ in their parity. Parity check can be realized by
modulo-r addition in hardware. Based on Pease’s observation,
Cohen [4] proposed a simplified control logic for radix-2 FFT
address generation. Johnson [5] proposed a similar way to
realize radix-r FFT addressing. In this method, the address
generator is composed of several counters, barrel shifters,
multiplexers and adder units. Other FFT processors [2,6] have
been designed to realize high-radix FFT. A common drawback
of all these methods is the need for successive addition
operations to realize the address generation. The number of
addition operations depends on the length of the FFT, so the
address generation speed is slower as the FFT transform
length increases. Several methods have been proposed to
avoid the addition for radix-2 FFT [7,8] but these methods
cannot be used for higher radix FFT.

This study presents a new architecture to realize the
address generation for radix-4 FFT. The new address
generator is composed of counters, barrel shifters,
multiplexers and registers, but no addition operation is
required. The critical path of the address generator is shorter,
and furthermore, the critical path of this address generator is
independent of the FFT length making it extremely efficient
for long length FFT.

II. RADIX-4 FFT
The N-point discrete Fourier transform is defined by

nk
N

jnk
N

N

n

nk
N eWNkWnxkX

π21

0
,1,...,1,0)()(

−−

=
=−== ∑

 (1)
The N-point FFT can be decomposed to repeated micro-
operations called butterfly operations. When the size of the
butterfly is r, the FFT operation is called a radix-r FFT. For
FFT hardware realization, if only one butterfly structure is
implemented in the chip, this butterfly unit will execute all
the calculations recursively. If parallel and pipeline
processing techniques are used, an N point radix-r FFT can be

executed by N
r
N

rlog clock cycles. This indicates that a

radix-4 FFT can be four times faster than a radix-2 FFT. Fig.
1 shows the signal flow graph of 64-point radix-4 FFT, and
Fig. 2 shows the general structure of the radix-4 butterfly. For
hardware realization of FFT, multi-bank memory and "in-
place" addressing strategy are often used to speed-up the
memory access time and minimize the hardware
consumption. For radix-r FFT, r banks of memory are needed
to store data, and each memory bank could be two-port
memory. With "in-place" strategy, the r outputs of the
butterfly can be written back to the same memory locations of
the r inputs, and replace the old data. In this case, to realize
parallel and pipelined FFT processing, an efficient addressing
scheme is needed to avoid the data conflict. A popular
addressing scheme for radix-r (r>2) was presented by
Johnson [5], however due to the modulo-r addition, this
method is slow and the speed depends on the length of FFT.

978-1-4244-3355-1/09/$25.00©2009 IEEE 437

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:58:36 UTC from IEEE Xplore. Restrictions apply.

0

11
12
13
1
15
16
17
18
19
20
21
22
23
2
25
26
27
28
29
30
31
32
33
3
35
36
37
38
39

0
1
2
3

5
6
7
8
9

50
51
52
53
5
55

60

56
57
58
59

61
62
63

10
9
8
7
6
5

3
2
1

11
12
13
1
15
16
17
18
19
20
21
22
23
2
25
26
27
28
29
30
31
32
33
3
35
36
37
38
39

0
1
2
3

5
6
7
8
9

50
51
52
53
5
55

60

56
57
58
59

61
62
63

10
9
8
7
6
5

3
2
1

11
12
13
1
15
16
17
18
19
20
21
22
23
2
25
26
27
28
29
30
31
32
33
3
35
36
37
38
39

0
1
2
3

5
6
7
8
9

50
51
52
53
5
55

60

56
57
58
59

61
62
63

10
9
8
7
6
5

3
2
1

0 0

11
12
13
1
15
16
17
18
19
20
21
22
23
2
25
26
27
28
29
30
31
32
33
3
35
36
37
38
39

0
1
2
3

5
6
7
8
9

50
51
52
53
5
55

60

56
57
58
59

61
62
63

10
9
8
7
6
5

3
2
1Pass 0 Pass 1 Pass 2 0

Memory
Bank0

Memory
Bank1

Memory
Bank2

Memory
Bank3

Figure 1. 64-point FFT using radix-4 butterfly units

Figure 2. Butterfly structure of radix-4 FFT

TABLE I. ADDRESS SEQUENCES FOR THE FIRST REGISTER SET (R0-R15)

TABLE II. ADDRESS SEQUENCES FOR THE SECOND REGISTER SET (R16-R31)

III. PROPOSED METHOD
This study presents a new addressing scheme for radix-r

FFT, which avoids complex addition steps in the address
generation unit at the expense of more registers and
multiplexers.

In proposed approach, four memory banks are used to store
the data, as shown in Figure 1. In pass 0, four inputs and four
outputs of any butterfly stage belong to different memory
banks. However, for pass 1 and pass 2, four inputs and four
outputs of any butterfly stage belong to same memory bank.
Since each memory bank is a two-port memory, at each clock
cycle, each memory bank can export (read) once and import
(write) once. Four clock cycles are necessary to perform four
read and four write accesses in pass 1 and pass 2. Ideally, in
four clock cycles, 16 imports and 16 exports can be
accomplished in the four memory banks. This can facilitate
four radix-4 butterfly operations to be executed in four clock
cycles. For 100% utilization of the butterfly unit as described
above, two sets of registers are necessary to buffer these data.
Each set contains 16 registers; the first register set (register 0
to register 15) is employed to buffer the outputs of the
memory units before they are imported to the butterfly unit,
and the second register set (register 16 to register 31) is used
to buffer the outputs of the butterfly unit before they are
imported to the memory banks. Eight 16-to-1 multiplexers are
used in each set to re-order the data for avoiding any data
conflict.

438

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:58:36 UTC from IEEE Xplore. Restrictions apply.

Butterfly Counter B

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

B0B1B2

12 BB •
12 BB • 02 BB •02 BB + 02 BB + 12 BB + 12 BB + 02 BB •

RAM0

RAM1

RAM2

RAM3

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1
2
3

5
6
7
8
9

10
11
12
13
1
15

0
1

D

DDDDDDDD

D
D

D

D
D

D

D
0
1

D

D
D

D

D
D

D
D

Radix-4
Butterfly

Pass Counter P

Counter D

Bm-1 Bm-2 P0P1P -1

Barrel Shifter

.

…

D

Data
Out

Read
Adress

Da a
In

Write
Adress

Data
Out

Read
Adress

Data
In

Write
Adress

Data
Out

Read
Adress

Data
In

Wri e
Adress

Data
Out

Read
Adress

Da a
In

Write
Adress

Figure 3. Address generation circuit for Radix-4 FFT

Fig. 3 shows the proposed scheme for N-point radix-4
FFT processor. Table I lists the address sequence of the first
register set, whereas Table II lists the address sequence of the
second register set (assume the butterfly calculation delay is
four clock cycles). Together, they present the address
sequence order for pass 1 of 64-point radix-4 FFT. For other
passes, the sequence tables for the register sets are similar.
Tables I and II show that for different clock cycles, the data
in the registers follow a very regular sequence and the
hardware components to realize these sequences are very
simple: After logic minimization, it results in only primitive
logic gates such as AND/OR gates using the least significant
three bits of the butterfly counter B (see Fig. 3).

Other main components of the FFT processor are
Counter D and the barrel shifter. Counter D has two parts;
pass counter P which is v=log4N bits (Pv-1 to P0) and butterfly

counter B which is ⎥⎥
⎤

⎢⎢
⎡=

4
log2

Nm bits (Bm-1 to B0).

The barrel shifter generates all the addresses for four
memory banks based on the pass number of the FFT, which
can be expressed as:

RR(counter B, 2p) (2)

where RR(counter B, 2p) means rotate-right butterfly counter
B by 2p bits, and p is the pass number of FFT.

For twiddle factors Wb, Wc and Wd, three memory banks
are used with same address generation logic. For pass p, this
address is given as:

0...000... 221 pmm BBB −− (2p 0’s follow) (3)
For different length FFT transforms, the control logic of the
multiplexers only depends on the last three bits of the counter
(see Fig. 3), so the register and multiplexer structures are
fixed for different length FFTs resulting in a common
architecture for any N-point FFT.

439

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:58:36 UTC from IEEE Xplore. Restrictions apply.

 TABLE III. SYNTHESIS RESULTS WITH CMOS 0.18µm TECHNOLOGY FOR DIFFERENT LENGTH FFT
(32-BIT COMPLEX DATA: 16-BIT EACH FOR THE REAL AND IMAGINARY PART)

Table III shows Synopsys Design Compiler synthesis results
using TSMC CMOS 0.18µm technology. For different length
FFTs, the memory usage scales proportional to transform
length, but the address generation circuit sizes are almost
same; confirming that method is extremely efficient for long
length FFT transforms. Compared to a radix-2 FFT
implementation given in [8], the throughput is faster by a
factor of 4.

IV. CONCLUSION
The proposed method for radix-4 FFT avoids any addition in
the address generation, enabling a fast datapath for butterfly
operations. The same concept can be extended to any radix
FFT, but the amount of registers and multiplexers for
different radix FFT will be different: For radix-r FFT, 22r
registers and 4r multiplexers are needed.

REFERENCES
[1] S. Mittal, Z.A. Khan, and M.B. Srinivas, “Area efficient high speed

architecture of Bruun's FFT for software defined radio”, IEEE Global
Telecommunications Conference GLOBECOM '07, pages 3118 -3122,
November 2007.

[2] L. Xiaojin, L. Zongsheng Lai, and C. Jianmin Cui, “A low power and
small area FFT processor for OFDM demodulator”, IEEE Transactions
on Consumer Electronics, 53(2):274-277, May 2007.

[3] M. C. Pease, “Organization of large scale Fourier processors”, J. Assoc.
Comput. Mach., 16:474–482, July 1969.

[4] D. Cohen, “Simplified control of FFT hardware”, IEEE Trans. Acoust.,
Speech, Signal Processing, 24:577-579, December 1976.

[5] L.G. Johnson, “Conflict free memory addressing for dedicated FFT
hardware”, IEEE Trans. Circuits Syst. II, vol. 39, pp. 312-316, May
1992.

[6] J.H. Takala, T.S. Jarvinen, and H.T. Sorokin, “Conflict-free parallel
memory access scheme for FFT processors”, Proc. of the International
Symposium on Circuits and Systems, ISCAS '03, vol. 4, pages 524-527,
May 2003.

[7] Y. Ma, “An effective memory addressing scheme for FFT processors”,
IEEE Trans. on Signal Process,47(3): 907–911, March 1999.

[8] X. Xiao, E. Oruklu, J. Saniie, “An Efficient FFT Engine With Reduced
Addressing Logic”, IEEE Transactions on Circuits and Systems II
Express Briefs, vol. 55, no 11, pp. 1149 - 1153, November 2008.

 64-point FFT 256-point FFT 1024-point FFT

Area

Total
Memory +
Butterfly

units

Address
Generation

unit
Total

Memory +
Butterfly

units

Address
Generation

unit
Total

Memory +
Butterfly

units

Address
Generation

unit

36662
cells

27591
cells

9071
cells

65547
cells

56915
cells

8632
cells

176746
cells

168199
cells

8547
cells

Delay 5.47 ns 5.49 ns 5.48 ns

440

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:58:36 UTC from IEEE Xplore. Restrictions apply.

